Permutation Code Equivalence Problem

Magali Bardet Ayoub Otmani Mohamed Saeed-Taha

University of Rouen Normandie - LITIS

Terminology and Notation

$\blacktriangleright\ \mathbb{F}$ finite field

▶ **G**_U generator matrix and **H**_U parity check matrix of $U \subset \mathbb{F}^n$

$$\blacktriangleright \mathcal{H}(U) \triangleq U \cap U^{\perp}$$
(Hull)

Code Isomorphism (Decision)

Given two linear codes $A \subsetneq \mathbb{F}^n$ and $B \subsetneq \mathbb{F}^n$, is there an isometry of \mathbb{F}^n that sends A in B?

Open Questions

Theoretical complexity

Algorithm design

Practical difficulty

Motivations

Classification of codes

Security of some cryptographic primitives (McEliece cryptosystem and alike)

Isometries of the Hamming Space \mathbb{F}^n

Permutations $\sigma \in \mathfrak{S}_n$

$$(u_1,\ldots,u_n)\mapsto (u_{\sigma^{-1}(1)},\ldots,u_{\sigma^{-1}(n)})$$

Monomial (diagonal) transformations

$$(u_1,\ldots,u_n)\mapsto (\lambda_1u_1,\ldots,\lambda_nu_n)$$
 with $\forall i, \lambda_i\neq 0$

Frobenius action $\zeta(x) = x^p$ when $\mathbb{F} = \mathbb{F}_{p^m}$

$$(u_1,\ldots,u_n)\mapsto (\zeta^i(u_1),\ldots,\zeta^i(u_n))$$

Permutation Code Equivalence (PCE)

Given two linear codes $A \subsetneq \mathbb{F}^n$ and $B \subsetneq \mathbb{F}^n$, is there a **permutation** of \mathbb{F}^n that sends A in B ?

What is known about PCE?

- Theoretical complexity (Petrank-Roth '97)
 - PCE is not NP-Complete
 - Graph Isomorphism (GI) is easier than PCE

Algorithm design

- Leon's algorithm (Magma). Low weight enumeration ~>> Exponential in the dimension
- Sendrier's algorithm. Weight enumerator of U ∩ U[⊥]
 → Exponential in the dimension of U ∩ U[⊥]
- Quadratic system (Saeed-Taha)

Practical difficulty

- PCE is easy for random linear codes (Sendrier's algorithm)
- In general, unknown?

$$\mathcal{H}(U)^{\perp} = (U \cap U^{\perp})^{\perp} = U + U^{\perp}$$
$$\rightsquigarrow \mathcal{H}_{\mathcal{H}(U)} = \begin{bmatrix} \mathbf{G}_{U} \\ \mathbf{H}_{U} \end{bmatrix}$$

$$\mathcal{H}(U) = \{\mathbf{0}\} \text{ if and only if } \mathbb{F}^N = U \oplus U^{\perp}$$
$$\forall v \in \mathbb{F}^N, \quad \mathbf{v} = \mathbf{v}_U + \mathbf{v}_{U^{\perp}} \quad \text{with} \quad \left\{ \begin{array}{l} \mathbf{v}_U \in U \\ \mathbf{v}_{U^{\perp}} \in U^{\perp} \end{array} \right.$$

Proposition $\mathcal{H}(U) = \{\mathbf{0}\}$ if and only if $\mathbf{H}_{\mathcal{H}(U)}$ is invertible

Proposition $\mathcal{H}(U) = \{\mathbf{0}\}$ if and only if $\mathbf{G}_U \mathbf{G}_U^T$ and $\mathbf{H}_U \mathbf{H}_U^T$ are invertible and

$$\mathbf{H}_{\mathcal{H}(U)}^{-1} = \begin{bmatrix} \mathbf{G}_{U}^{T} \left(\mathbf{G}_{U} \mathbf{G}_{U}^{T} \right)^{-1} & \mathbf{H}_{U}^{T} \left(\mathbf{H}_{U} \mathbf{H}_{U}^{T} \right)^{-1} \end{bmatrix}$$

Assume $\mathcal{H}(U) = \{\mathbf{0}\}$

$$\left\{ \begin{array}{rcl} \boldsymbol{\Sigma}_{U} & \triangleq & \boldsymbol{\mathsf{G}}_{U}^{T} \left(\boldsymbol{\mathsf{G}}_{U} \boldsymbol{\mathsf{G}}_{U}^{T} \right)^{-1} \boldsymbol{\mathsf{G}}_{U} \\ \\ \boldsymbol{\Sigma}_{U^{\perp}} & \triangleq & \boldsymbol{\mathsf{H}}_{U}^{T} \left(\boldsymbol{\mathsf{H}}_{U} \boldsymbol{\mathsf{H}}_{U}^{T} \right)^{-1} \boldsymbol{\mathsf{H}}_{U} \end{array} \right.$$

Proposition

$$\forall \mathbf{v} \in \mathbb{F}^N$$
, $\mathbf{v}_U \triangleq \mathbf{v} \, \mathbf{\Sigma}_U$ and $\mathbf{v}_{U^{\perp}} \triangleq \mathbf{v} \, \mathbf{\Sigma}_{U^{\perp}}$.

When $U \cap U^{\perp} = {\mathbf{0}}$

1. Σ_U generates U

 $(\mathbf{\Sigma}_U^{\perp} \text{ generates } U^{\perp})$

2. $\boldsymbol{\Sigma}_U^T = \boldsymbol{\Sigma}_U$

3. $\Sigma_U^2 = \Sigma_U$

4. $\Sigma_U \Sigma_{U^{\perp}} = \mathbf{0}$ and $\Sigma_{U^{\perp}} \Sigma_U = \mathbf{0}$

5. $\boldsymbol{\Sigma}_U + \boldsymbol{\Sigma}_{U^\perp} = \mathbf{I}_N$

A New Invariant

Proposition Σ_U and $\Sigma_{U^{\perp}}$ are invariants of U and U^{\perp}

Proof.

Assume that $\mathbf{D} = \mathbf{SG}$ where \mathbf{S} is an invertible matrix

$$\mathbf{D}^{T} \left(\mathbf{D} \mathbf{D}^{T} \right)^{-1} \mathbf{D} = (\mathbf{S} \mathbf{G})^{T} \left(\mathbf{S} \mathbf{G} (\mathbf{S} \mathbf{G})^{T} \right)^{-1} \mathbf{S} \mathbf{G}$$
$$= \mathbf{G}^{T} (\mathbf{S}^{-1} \mathbf{S})^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} (\mathbf{S}^{-1} \mathbf{S}) \mathbf{G}$$
$$= \mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} \mathbf{G}$$

Graph Associated to a Code

Assume that U has a trivial hull

Then let us interpret Σ_U as the adjacency matrix of weighted graph

• The graph $\mathcal{G}(U)$ associated to U is the graph defined by Σ_U

► For any permutation X

$$\mathbf{I}_{N} = \mathbf{X}^{T}\mathbf{X} = \mathbf{X}^{T} (\mathbf{\Sigma}_{U} + \mathbf{\Sigma}_{U^{\perp}})\mathbf{X}$$
$$= \mathbf{X}^{T}\mathbf{\Sigma}_{U}\mathbf{X} + \mathbf{X}^{T}\mathbf{\Sigma}_{U^{\perp}}\mathbf{X}$$

ln particular if $B = A\mathbf{X}$ then

$$\boldsymbol{\Sigma}_{B} \triangleq \boldsymbol{\mathsf{X}}^{T} \boldsymbol{\Sigma}_{A} \boldsymbol{\mathsf{X}}$$
 and $\boldsymbol{\Sigma}_{B^{\perp}} \triangleq \boldsymbol{\mathsf{X}}^{T} \boldsymbol{\Sigma}_{A}^{\perp} \boldsymbol{\mathsf{X}}$

Theorem *Assume that A and B have trivial hulls.*

Then A and B are permutation equivalent if and only if both

• $\mathcal{G}(A)$ and $\mathcal{G}(B)$ are isomorphic $(\mathbf{\Sigma}_B = \mathbf{X}^T \mathbf{\Sigma}_A \mathbf{X})$

• $\mathcal{G}(A^{\perp})$ and $\mathcal{G}(B^{\perp})$ are isomorphic $(\mathbf{\Sigma}_{B^{\perp}} = \mathbf{X}^{\mathsf{T}} \mathbf{\Sigma}_{A}^{\perp} \mathbf{X})$

Codes with Non-Trivial Hull

Definition (Shortened code)

 $\mathbf{u} \in S_{\mathcal{I}}(U)$ if and only if $(\mathbf{u} \in U \text{ and } \forall i \in \mathcal{I}, u_i = 0)$

Proposition $S_{\mathcal{I}}(U)$ has a trivial hull when \mathcal{I} is an information set for $\mathcal{H}(U)$ Codes with Non-Trivial Hulls

Proposition

▶ $\mathcal{I} \subset [1, n]$

$$\blacktriangleright \mathcal{J} \triangleq \mathbf{X}(\mathcal{I})$$

Then $\mathcal{S}_{\mathcal{J}}(B)$ and $\mathcal{S}_{\mathcal{I}}(A)$ are permutation equivalent with

$$\mathcal{S}_{\mathcal{J}}(B) = \mathcal{S}_{\mathcal{I}}(A) \mathbf{X}$$

PCE for Codes with Non-Trivial Hulls

Theorem PCE can be solved in $O(hn^{\omega+h+1}GI(n))$ time where

 $\blacktriangleright h = Dimension of the hull$

• $\omega = Exponent$ of matrix multiplication ($2 \le \omega < 3$).

Gl(n) = Time complexity for testing if two weighted graphs with n vertices are isomorphic

Conclusion and Open Questions

PCE is not harder than GI for codes with trivial hulls

Generalizing the reduction to codes with non trivial hulls

Treating the diagonal equivalence