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Abstract. Del Pezzo surfaces are certain algebraic surfaces in projective n-space
of degree n. They contain an interesting configuration of lines and have a rational
parametrization. We give an overview of the classification with an emphasis on
algorithmic constructions (e.g. of the parametrization), on explicit computations,
and on real algebraic geometry.

1 Introduction

This paper is elementary in the sense that it does not use the concepts and terminology
of modern algebraic geometry, such as sheaves, schemes, divisors, or vector bundles.
My personal opinion is that these concepts belong more to the “algebraic” than to the
“geometric” part of “algebraic geometry”, and the goal was to write an introduction
to Del Pezzo surfaces for geometers and not for algebraists. This is also the reason
why the paper is of survey type, but it cannot be used as an introduction to the modern
theory of Del Pezzo surfaces. From that point of view, the main interest in Del Pezzo
surfaces is related to birational classification of algebraic varieties of higher dimension
(e.g. Calabi-Yau threefolds) or to arithmetic questions, and these relations are not even
touched upon here. Our main intention was to collect material about this classical topic
which could be of some interest to applied geometers. The main emphasis has been put
on algorithmic techniques and on examples. For this reason, it would have been more
justified to give the title “a very biased look at Del Pezzo surfaces”.

The paper does assume a good familiarity with projective geometry, and the de-
scribed algorithmic techniques can only be carried out if one can solve systems of alge-
braic equations in several unknowns.

The definition of Del Pezzo surfaces given in sect. 4 is not the usual one (which
uses canonical divisors), but it follows Del Pezzo [5], who encounters this class of
surfaces in his investigation of surfaces of degree n in IPn. In the course of arriving
at this definition, we give some theorems (Theorem 2, Theorem 5, Theorem 8, and
Theorem 11) and occasionally proofs. Of course, these theorems are classical facts
whose origins date back by centuries. A proof of Theorem 5 can be found in [7].

The unprojection algorithm in sect. 5 is original. Its advantage is that it makes a
uniform treatment of parametrization algorithms (see sect. 6) possible.

The classification of Del Pezzo surfaces in sect. 6 is due to [5]; a modern proof can
be found in [12]. No proof is contained in this paper because it would be too long and
too technical. A complete elementary proof of Theorem 17 would also be surprisingly
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complicated because the finiteness of resolution of singularities is not a priori clear. Of
course, the theorem also follows from the classification given in [5].

In the chosen approach, Del Pezzo surfaces of degree 2 and 1 are certainly unnatural
(they also do not arise in [5]). But as early as in [10], these cases are discussed together
with the other Del Pezzo surfaces, in the context of the classification of linear systems
of elliptic curves in the plane. Theorem 24 and Theorem 28 can be found in [4].

The real classification of Del Pezzo surfaces, especially Theorem 30, is due to [3].
Modern treatments can be found in [20, 15, 21]. The technique used in example 35 to
compute an improper parametrization (see also remark 36) is also mentioned in [3, 13,
17].

The author was supported by the Austrian science fund (FWF) in the frame of the
special research area SFB 013 and of project P15551.

2 Projective Varieties, Degree, and Projection

Let IPn denote complex projective space of dimension n. Let X ⊂ IPn be a projective
algebraic variety, i.e. the zero set of a homogeneous prime ideal. The dimension of X
can be defined as the smallest integer m such that there exists an n−m−1-dimensional
linear subspace disjoint from X . A generic linear subspace of dimension n −m inter-
sects X in a finite number of points. If we count with multiplicities, then this number
depends only on X , and this is a way to define the degree of X (following [8]).

Let p ∈ IPn be a point, e.g. p = (x0: . . . :xn) = (1:0: . . . :0) (the affine origin). Let
H be a linear hyperplane not containing p, e.g. the plane x0 = 0. The projection πp,H

with center p onto H is defined for all points except p. In the example, this is just the
omission of the first projective coordinate x0. - Let Y be the closure of the image of X
under this projection. It is again a projective variety. Its dimension is either m or m−1.
The second is the case if and only if X is a cone and p is its vertex, or X is a linear
space and p is a point on X .

Remark 1. The choice of H is not essential. A different choice leads to another pro-
jective image Y ′ which is projectively equivalent to Y . In the following, we will often
omit any explicit references to H .

If dim(Y ) = dim(X) = m, then there is a positive integer f such that the preimage
of a generic point of the projection map πp : X → Y has f points. In case f = 1, then
πp : X → Y is birational. The number f is called the tracing index of the projection.

A generic linear n −m − 1-subspace L of H intersects Y in deg(Y ) points. The
linear span of L and p intersects X in f · deg(Y ) points plus an intersection at p, that
has to be counted with multiplicity

r := deg(X)− f · deg(Y ). (1)

The number r is also called the multiplicity of X at p, and p is also called an r-fold point
of X . Nonsingular points have multiplicity 1, and points outside X have multiplicity 0.

Theorem 2. Let X ⊂ IPn be a projective variety of dimension m and degree d. Assume
that X is not contained in a proper linear subspace. Then d ≥ n−m + 1.
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Proof. We proceed by induction on n, fixing m. If n = m (obviously the smallest
possible value for n), then X = IPm and d = 1. The inequality is fulfilled.

Assume n > m. Let p be a nonsingular point of X . Let Y ⊂ IPn−1 be the image
of X under the projection from p. If Y were contained in a proper linear subspace L,
then X would be contained in the linear span of L and p, contradicting the assumption.
Therefore Y is not contained in a proper linear subspace.

Let f be the tracing index of the projection. Then

d = f · deg(Y ) + 1 ≥ f · (n−m) + 1 ≥ n−m + 1,

where the first inequality is a consequence of the induction hypothesis.

Remark 3. A closer look at the proof reveals that if equality holds, then the variety
is rational (i.e. birationally equivalent to a projective space). Indeed, in this case the
tracing index is always 1 in each projection step, so that we get a birational map from
X to IPm.

p
q

T

H=Y

π (q)

X

Fig. 1. Projection from a nonsingular point

Projections from nonsingular points are of special interest. Let X ⊂ IPn be a variety
of dimension m, and let p be a nonsingular point of X . The projection πp : X → Y
is not defined at p. But for any differentiable curve C : [0, 1] → X with C(0) = p,
the limit limt→0 πp(C(t)) exists and lies on Y . The set of all these limits is equal to
the intersection of the tangent space T of X at p with the projection hyperplane H (see
fig. 1).

Conversely, assume that we have a variety Y ⊂ IPn of dimension m and an m− 1-
dimensional linear subspace L on it. Can we construct a variety X ⊂ IPn+1 and a
nonsingular point p ∈ X such that Y is the image of X under the projection by p? We
will give partial answers to this question below.
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3 Varieties of Minimal Degree

Let C ⊂ IPn be a curve of degree n. (From now on, a statement such as C ⊂ IPn

implicitly implies the assumption that C is not contained in a proper linear subspace.)
By remark 3, C is rational. Therefore, C has a parametrization (P0(t): . . . :Pn(t)) with
polynomials P0, . . . , Pn of degree at most n (and the maximum is reached by at least
one of the Pi).

Since C is not contained in a proper linear subspace, the Pi are linearly independant.
But the vector space of all polynomials of degree at most n has dimension n+1, and so
the Pi form a basis. We can apply a projective transformation in order to transform this
basis into the standard basis Pi = ti, i = 0, . . . , n. This implies that, up to projective
transformations, there is precisely one curve C ⊂ IPn of degree n, which is also called
the rational normal curve of degree n.

Remark 4. The Steiner construction (see [7], p. 528–533), shows that for any n + 3
points in general position, there is a unique rational normal curve passing through them.

For surfaces, we have a similar classification (see [7], p. 525).

Theorem 5. Let S ⊂ IPn be a surface of degree n−1. Then S is either a rational scroll
Rn,r with parametrization (1:t: . . . :tn−r−1:s:st: . . . :str) for some r ≤ n−1

2 (up to pro-
jective transformation), or n = 5 and S is the Veronese surface V with parametrization
(1:t:t2:s:st:s2) (up to projective transformation).

R2,0 V

R18,6

R3,03,1R

Fig. 2. Surfaces of minimal degree in lattice representation

Remark 6. Note that in both cases, the surface S is toric, i.e. parametrized by mono-
mials. Toric surfaces have recently been used in [11] in order to generate multi-sided
surface patches; they can be represented by lattice polygons in an obvious way. Ac-
tually, the surfaces of minimal degree are precisely the toric surfaces associated to a
polygon without interior lattice points (see fig. 2).

Clearly, R2,0 is the projective plane, and Rn,0 is the cone over the rational normal
curve of degree n − 1. The quadric surface R3,1 ⊂ IP3 has two rulings (families of
lines), namely the ruling of lines given by s = constant and the ruling of lines given by
t = constant.
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Remark 7. It is easy to see that the rational scroll Rn,r is a projection of Rn+1,r – just
omit the coordinate corresponding to tn−r. The Veronese surface is not the projection
of a surface in IP6 of minimal degree, because it does not contain any lines.

4 Curves of Almost Minimal Degree

We say that a variety X ⊂ IPn has almost minimal degree if deg(X) = n−dim(X)+2.
For any n ≥ 2, we can produce almost minimal curves C ⊂ IPn by “spoiling

rational normal curves”. Take a rational normal curve C ′ ⊂ IPn+1 of degree n + 1, and
a point p outside C. Let C be the image of C ′ under the projection from p. Since p is a
point of multiplicity 0, the degree of C is a divisor of n + 1. By Theorem 2, the degree
is greater than or equal to n + 1, therefore it is equal to n + 1.

Conversely, any rational curve of almost minimal degree C ⊂ IPn is a spoiled ratio-
nal normal curve. To show this, we write down a parametrization (P0(t) : · · · : Pn(t))
be a sequence of polynomials with maximal degree n + 1. Let Q(t) be a polynomial of
degree at most n + 1 that is linearly independent of P0, . . . , Pn. Then the curve defined
by (P0(t): . . . :Pn(t):Q(t)) is a rational normal curve, and C is the image of the pro-
jection from (0: . . . :0:1). (This point must be a point outside the rational normal curve
because its multiplicity is zero by the degree formula 1.)

There are also irrational curves of almost minimal degree; the first examples are
the nonsingular cubic plane curves. It is well-known that the nonsingular plane cubic
curves are elliptic, i.e. of genus one. Here is a general theorem on irrational curves of
almost minimal degree.

Theorem 8. Let C ⊂ IPn be an irrational curve of almost minimal degree. Then C is
elliptic and nonsingular.

Proof. We proceed by induction. If n = 2, it suffices to state that cubic plane curves
are either rational or elliptic, and the elliptic ones are nonsingular.

Let n ≥ 3. Let p be a nonsingular point on C. Let C ′ be the image of C under
projection from p. Let d := deg(C ′). Then d|n by the degree formula 1, and d ≥ n− 1
by Theorem 2. This implies that d = n, i.e. C ′ has almost minimal degree, and the
projection gives a birational map C → C ′. By induction hypothesis, C ′ is elliptic.
Since the genus is a birational invariant, C is also elliptic.

In order to show that C is nonsingular, let q be an arbitrary point of C, and let r
be its multiplicity. Let D be the image of C under projection from q. Then deg(D) is
a divisor of n + 1 − r, which is greater than or equal to n − 1. This leaves only the
cases r = 1 and deg(D) = n, or r = 2 and deg(D) = n− 1. In both cases, the tracing
index of the projection must be one, so that C and D are birationally equivalent. But
this rules out the second case, because D would then have minimal degree and therefore
be rational. Hence r = 1, and we showed that C has only points with multiplicity one.

Example 9. For any n ≥ 2, we have an elliptic curve C ⊂ IPn+1 of almost minimal
degree. Here is an example for n = 3m− 1.

Let C be the plane cubic with equation x3 + y3 + z3 = 0. Let f : IP2 → IPn be the
embedding given by

(x:y:z) �→ (xm: . . . :ym:xm−1z: . . . :ym−1z:xm−2z2: . . . :ym−2z2).
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The image of C is of degree 3m = n + 1.
For all other n, examples can be constructed by one or two steps of point projection

of the above example.

Remark 10. In general, it is not true that the absence of singularities of a curve of
almost minimal degree implies that the curve is elliptic. An example of a spoiled rational
normal curve without singularities is the “twisted quartic” in IP3 with parametrization
(1:t:t3:t4).

5 Surfaces of Almost Minimal Degree

We can produce surfaces of almost minimal degree by spoiling surfaces of minimal
degree, as we did in the previous section for curves. These surfaces are rational, and the
projections of rational scrolls are ruled surfaces.

As a base for some proofs on induction, we need to have a rough classification of
the cubic surfaces in IP3. We distinguish the following types.

1. Cubic surfaces with a double line. These are the projections of cubic rational scrolls
in IP4.

2. Cones over nonsingular cubic plane curves. These are irrational. They have a triple
point and no other singularities.
(Note that the cones over singular cubic plane curves are already falling into type 1
above.)

3. Cubic surfaces with isolated double points. These are rational. Indeed, projection
from a double point gives a birational map onto IP2.

4. Nonsingular cubic surfaces. These are also rational.

A much finer classification can be found in [2, 1].
Type 2 can easily be generalized to arbitrary dimension: the cone over an elliptic

curve of almost minimal degree is an irrational surface of almost minimal degree. It
is well-known [5, 6] that every irrational surface of almost minimal degree is a ruled
surface with elliptic base.

We define a Del Pezzo surface as a rational surface of almost minimal degree that is
not a spoiled surface of minimal degree. The cubic Del Pezzo surfaces are the surfaces
of type (3) and (4) above.

Theorem 11. Let S be a Del Pezzo surface.
a) S has at most isolated double points.
b) If S has degree at least 4, then the image of S under projection from a nonsingular
point p ∈ S is a Del Pezzo surface.
c) A generic hyperplane section of S is an elliptic curve of almost minimal degree.
d) The number of lines on S is finite.

Proof. (c): It is obvious that the generic hyperplane section has almost minimal degree.
They are not rational, because then the surface would be a spoiled minimal surface (this
is a consequence of the discussion of surfaces with rational hyperplane sections in [4]).
Hence they are elliptic.
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(b): Let S′ be the image of the projection. By the degree formula 1, S ′ has almost
minimal degree and is birationally equivalent to S. The hyperplane sections are pro-
jections from intersections of S with hyperplanes through p. Because of (c), these are
elliptic curves. So, S ′ is rational and has generic hyperplane sections of genus one. On
the other hand, S ′ cannot be a spoiled surface of minimal degree, because these have
generic hyperplane sections of genus zero. Hence S ′ is a Del Pezzo surface.

(a): By the degree formula 1, S cannot have points of multiplicity 3 or more. We
prove that the number of double points is finite, by induction on the degree. For degree
3, this follows from the classification of cubic surfaces above. For n > 3, choose a
nonsingular point and project; the image is again a Del Pezzo surface S ′ of degree n−1,
by (b). Therefore S ′ has only finitely many double points, by the induction hypothesis.
It follows that the number of double points on S is also finite, since the image of a
double point is a double point.

(d): We proceed by induction. For degree 3, it is well-known that any cubic surface
of type (3) or (4) has only finitely many lines. For n ≥ 4, assume indirectly that S has
infinitely many lines. Let p be a nonsingular point on S. Since S is not a cone with
vertex p, there are only finitely many lines through p. Hence there remain infinitely
many lines on the image S ′ of the projection from p. But S ′ is a Del Pezzo surface,
contradicting the induction hypothesis.

The lines on a Del Pezzo surface are interesting for several reasons. One of them
is that they can be used to construct a Del Pezzo surface of degree one higher which
projects to the given Del Pezzo surface.

Here is an explicit unprojection algorithm. It assumes that we have given a Del
Pezzo surface S ⊂ IPn and a line l lying on S.

1. Choose a generic linear form L(x0, . . . , xn) vanishing on l.
2. Compute the intersection of the hyperplane defined by L with S. As we will show

in Theorem 14, it consists of two components: the line l and a rational normal curve
C of degree n− 1.

3. Choose a generic quadratic form Q(x0, . . . , xn) vanishing on C. (We will show in
Theorem 14 that there exist such quadratic forms.)

4. Compute the image of S under the map given by

(x0: . . . :xn) �→
(

x0: . . . :xn:
Q(x0, . . . , xn)

L(x0, . . . , xn)

)
.

Example 12. Let S ⊂ IP3 be the surface given by

3x0x
2
1 + 3x0x

2
2 + 3x0x

2
3 − 3x3

0 − 10x1x2x3 = 0.

This cubic has 27 lines on it (see fig. 3). Let l be the line x0 = x3 = 0.
We choose the linear form L := x3. It intersects S in l and in the plane conic C

defined by x3 = x2
1 + x2

2 − x2
0 = 0.

Now we choose the quadric Q := x2
1 + x2

2 − x2
0.

To compute the image of the map defined in the unprojection algorithm, we intro-
duce a new variable x4. The equation Lx4 − Q = 0 holds on the image. A second
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Fig. 3. A cubic Del Pezzo surface with 27 real lines (picture courtesy of O. Labs)

equation can be found by writing the equation of S as linear combination of L and Q
and dividing by L, replacing Q/L by the new variable x4:

3x0(x
2
1 + x2

2 − x2
0) + (3x0x3 − 10x1x2)x3

x3
= 3x0x4 + 3x0x3 − 10x1x2 = 0.

The image is the intersection of these two quadratic forms in IP4, which is indeed a
surface of degree 4.

Remark 13. How do we know whether our choice of the linear or quadratic form in
steps 1 and 3 were general enough? In practice, the best strategy is just to try an arbitrary
one. There is a chance that the choice does not work, but the bad choices are of measure
zero in the set of all choices.

Theorem 14. The unprojection algorithm is correct.

Proof. We begin by proving the statement claimed in step 2: the hyperplane defined by
L intersects S in l and a rational normal curve of degree n − 1. In fact, it is clear that
l is a component of the intersection, and that the degrees of the remaining irreducible
components add up to n − 1, but we have to show that there is only one remaining
component.

Let p be a nonsingular point on l. The projection from p is a Del Pezzo surface S ′

by theorem 11. The line l projects to a point q ∈ S ′, which is either a single or a double
point (in fact, it is always a double point, as we will see in remark 15 below). Projection
from q is birational by the degree formula 1: let S ′′ be the image. The remaining com-
ponents project to a generic hyperplane section of S ′′. By Bertini’s theorem (see [9],
Thm. 8.18, p. 179; Rem. 8.18.1, p. 180), generic hyperplane sections are irreducible,
and the statement is proven.

The ideal of the rational normal curve C is generated by quadratic forms. Therefore
the generic quadratic form Q through C does not vanish identically on the line l. Con-
sequently, Q is not contained in the vector space generated by the quadratic multiples
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of L and the quadratic forms vanishing on S. This implies that the image S0 of the
unprojection constructed in step 4 is not contained in a linear subspace.

The degree of S0 is the number of intersections of S ′ with two generic hyperplanes
H1, H2. We can assume that the form defining H1 does not contain the new variable
xn+1 (by linear algebra). It defines a hyperplane H3 ⊂ IPn. The intersection points
of H1 and H2 and S0 correspond to the intersection points of S and H3 and some
quadric surface Q0, which we get when we multiply the equation of H2 by L and
replace L times the new variable by Q, minus the intersection points of S, L, and H3.
This number is 2n − (n − 1) = n + 1. Therefore S0 is a surface of almost minimal
degree.

There is an obvious projection from S0 to S (omitting the last coordinate). The
center is a nonsingular point, by the degree formula 1. Because S0 is rational and is not
a spoiled surface of minimal degree, S0 is a Del Pezzo surface.

Remark 15. Revisiting the above proof again, we can now show that if p is a nonsin-
gular point lying on a line l contained in S, then the image q of l under the projection
is a double point on the image S ′ of S. Let S′′ be the image of the projection from q.
The generic hyperplane section of S ′′ is a birational image of the rational normal curve
which forms together with L the intersection of S with a general hyperplane through L.
Hence S′′ is not a Del Pezzo surface, and q cannot be a nonsingular point.

6 Classification of Del Pezzo Surfaces

For the theory of Del Pezzo surfaces, the techniques of projection and unprojection are
very useful because they allow induction proofs (upward and downward). We can draw
an (infinite) directed graph of all Del Pezzo surfaces up to projective transformations,
with an edge from S1 to its images under projections from nonsingular points. The
natural question arises: is this graph connected?

It is clear that it would suffice to show that there is a path connecting any two cubic
Del Pezzo surfaces, because we can always do projection steps down to degree 3, and
these are the minimal vertices of the graph.

Another possible approach is to locate the maximal vertices of the graph.

Theorem 16. Let S be a Del Pezzo surface without a line. Then S is one of the follow-
ing three surfaces:

1. the nonsingular surface F9 ⊂ IP9 with parametrization (1:s:t:s2:st:t2:s3:s2t :
st2:t3);

2. the nonsingular surface F8 ⊂ IP8 with parametrization (1:s:s2:t:st:s2t:t2:st2 :
s2t2);

3. the surface G8 ⊂ IP8 with parametrization (1:s:s2:s3:s4:st:s2t:s3t:s2t2), which
has a double point at (0: . . . :0:1).

For the proof, which is beyond the scope of this paper, we refer to [12] or [18].

Theorem 17. Every sequence of successive unprojections terminates.
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If the sequence contains a nonsingular surface, then all subsequent unprojections are
also nonsingular, because we cannot get rid of double points by projection. Then it is
also clear that the sequence terminates, because by unprojecting nonsingular Del Pezzo
surfaces we cannot create new lines (as lines always project to lines), but we will erase
at least one line. This follows from the fact that all lines not passing through the center
of projection are also there on the image of projection. If the image is nonsingular, then
there is no line passing through the center, because such a line would project to a double
point (see remark 15).

Unprojection can create new lines if the exceptional line contains double points. We
do not give a termination proof for this case, because this would require a deeper anal-
ysis of the type of double points of Del Pezzo surfaces. For a full proof of termination
(using a different approach), we refer to [18].

F
8

G
8

F
9

Fig. 4. A piece of the graph of Del Pezzo surfaces

Corollary 18. The graph of Del Pezzo surfaces is connected. For every Del Pezzo sur-
face except F8 and G8, there is a sequence of unprojections terminating with F9.

Proof. To show that the graph is connected, it suffices to show that there are paths of
projections and unprojections connecting F9, F8, and G8. These paths are shown in
fig. 4. The lattice polygons represent monomial parametrizations of Del Pezzo surfaces
(see also remark 6).

The surfaces F8 and G8 have a group of projective automorphisms that acts transi-
tively on the nonsingular points. Therefore, there is, up to projective isomorphism, just
one projection image of F8 and one from G8, namely those depicted in fig. 4.

Let S be a Del Pezzo surface different from F8 and G8. Then there is a sequence of
unprojections terminating with F9, F8, or G8. If it terminates with F8 or G8, then the
last but one surface can also be unprojected to F9, as can be seen in fig. 4.

Corollary 19. Every Del Pezzo surface S ⊂ IPn except F8 and G8 has a parametri-
zation by cubic polynomials through 9 − n base points (infinitely near base points are
allowed).
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Proof. Every such Del Pezzo surface is a projection from S9, which is parametrized by
cubic polynomials. If S has degree n, then we need n projection steps, each introducing
one base point.

Here is an algorithm to construct a parametrization of an implicitly given Del Pezzo
surface. It assumes that we have given a Del Pezzo surface S ⊂ IPn in implicit form.

1. Reduce to the case n = 4 by some projection or unprojection steps.
2. Compute a line on S.
3. Project from the line. This is a birational map onto IP2.
4. Compute the inverse of the map.
5. Reverse the projection/unprojection steps from step 1.

Example 20. Let S be the cubic surface from example 12. We already did the unpro-
jection to a surface S0 ⊂ IP4 with equations

x3x4 − x2
1 − x2

2 + x2
0 = 3x0x4 + 3x0x3 − 10x1x2 = 0.

The surface S0 contains the line (3:3:3p:9p:p). The projection from this line is given by
(x0: . . . :x4) �→ (x0 − x1 : 3x2 − x3 : x2 − 3x4).

We do the linear coordinate change

(x0, . . . , x4) = (y3, y0 + y3, y2 + 3y4, y1 + 9y4, y4)

in order to move l to a coordinate subspace. The transformed system is

y1y4 − y2
0 − 2y0y3 − y2

2 − 6y2y4 = 3y1y3 − 10y0y2 − 30y0y4 − 10y2y3 = 0.

This is a linear system for y3, y4. The inverse of the projection is given by the solution
to this system. The parametrization of S0 can then easily be computed by plugging into
the above change of coordinates. The parametrization of S is then computed even more
easy, we just have to truncate the last coordinate function.

Remark 21. In steps 1 and 2, we need some line on the surface. This can be done by
plugging the parametrization of a general line into the equations and solving for the
coefficients of the general line. It pays off to first project the surface into 3-space before,
because this reduces the number of unknowns.

For the inversion of a birational map, we refer to [16].

Remark 22. For nonsingular Del Pezzo surfaces of degree less than or equal to 7, the
number of lines depends only on the degree (e.g. nonsingular cubic surfaces have 27
lines). The incidence graph of the lines is also determined by the degree. See [12] for
details.

7 Del Pezzo Surfaces of Degree 2 and 1

In order to describe Del Pezzo surfaces of degree 2 and 1, we need to introduce a
generalization of projective spaces, namely weighted projective spaces (see also the
short note [14]).
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Let w := (w0, . . . , wn) be a vector of positive integers. Weighted projective space
IPw is defined as the quotient of Cn+1 − {0} by the equivalence relation identifying
(x0, . . . , xn) with (λw0x0, . . . , λ

wnxn), for any λ ∈ C∗. This is an algebraic variety of
dimension n. If w = (1, . . . , 1), then IPw is just IPn.

Weighted projective varieties are algebraic subvarieties of IPw. They are defined
by weighted homogeneous polynomials. The weigthed degree of a monomial summand
xe0

0 . . . xen
n is defined as

∑
i wiei, and a polynomial is weighted homogeneous iff all its

monomials have the same weighted degree.
For any projective variety X ⊂ IPn, the Hilbert function H : IN → IN is defined

by setting H(m) as the dimension of the quotient vector space of all forms of degree
m in x0, . . . , xn modulo the vanishing ideal of X . For large m, the function H is a
polynomial. Its degree is the dimension of X . If the dimension is r, then the leading
coefficient of the Hilbert polynomial times r! is equal to the degree of X (see [9]).

Using the Hilbert function, we can define the degree also for varieties in weighted
projective spaces. It is natural to define that a surface S has almost minimal degree d
if the leading coefficient of the Hilbert polynomial is d

2 , and the value of the Hilbert
function at m = 1 is d + 1. (In the case of ordinary projective space, this is equivalent
to saying that S has degree d and is contained in IPd but not in a linear subspace.)

When we add the restrictions that S is rational and not spoiled, we have defined
weighted Del Pezzo surfaces. It turns out that we get two new types of Del Pezzo sur-
faces, namely those of degree 2 and those of degree 1.

By definition, a Del Pezzo surface of degree 2 is a surface S ∈ IP1,1,1,2 defined
by a polynomial F of weighted degree 4, subject to the following conditions. We can
write F (x0, x1, x2, y) as cy2 + F2(x0, x1, x2)y + F4(x0, x1.x2) for a suitable constant
c and polynomials F2, F4 of degree 2 and 4, and we define the quartic polynomial
D(x0, x1, x2) := discy(F ) = F 2

2 − 4cF4.

1. The discriminant D is squarefree. (One can show that otherwise S is a spoiled
surface of minimal degree.)

2. The discriminant D has no four-fold point. This just excludes 4 lines meeting in a
point. (One can show that otherwise S is not rational.)

Let S be a Del Pezzo surface of degree 2. The projection onto the first three projec-
tive coordinates projects S onto IP2. This map is actually defined everywhere (because
the point (0:0:0:1) does not lie on S), and has tracing index 2. The inverse image of
a line l ⊂ IP2 is in general an elliptic curve on S. If l is a tangent to the discriminant
curve D = 0, then the inverse image is rational. If l is a bitangent, i.e. l is tangent at
two points, then the inverse image has two components, both of which are rational. In
such a case, the two components are called pseudo-lines. They play a similar role as the
lines of Del Pezzo surfaces in ordinary projective space.

Any pseudo-line l can be defined by a linear equation L(x0, x1, x2) = 0 and a
weighted quadratic equation of type y −Q(x0, x1, x2) = 0. The unprojection is given
as the image of S under the rational map defined by

(
x0, x1, x2,

y−Q
L

)
.

Example 23. Let S be the Del Pezzo surface given by the equation

y2 − 10x1x2y + 9x2
0x

2
1 + 9x2

0x
2
2 − 9x4

0 = 0
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in IP1,1,1,2. The discriminant is 100x2
1x

2
2 − 36x2

0x
2
1 − 36x2

0x
2
2 + 36x4

0. The line x0 = 0
is a bitangent. For computing the inverse image, we set x0 to 0 and get the equation
y2 − 10x1x2y, which factors into y(y − 10x1x2). Each of the two factors give one
pseudo-line.

We use the pseudo-line x0 = y = 0 for unprojection. The unprojection map is(
x0 : x1 : x2 : y

3x0

)
, and the image is the cubic surface

3x0x
2
1 + 3x0x

2
2 + 3x0x

2
3 − 3x3

0 − 10x1x2x3 = 0.

Projection from a nonsingular point of a cubic Del Pezzo surface S0 ⊂ IP3 (say the
point (0:0:0:1)) is more than just omitting the last coordinate: we also need to give a
value for the additional coordinate y of weight 2. This value is not uniquely determined.
It is the product of x3 with the leading coefficient of the cubic equation with respect to
x3 (which is a linear polynomial because (0:0:0:1) is a nonsingular point), plus an
arbitrary quadratic form in x0, x1, x2.

Theorem 24. Let S ⊂ IP1,1,1,2 be a Del Pezzo surface of degree 2. Then S has a
parametrization with the first three coordinate functions being cubics through 7 base
points, and the fourth coordinate function being a sextic vanishing doubly at the 7 base
points.

Proof. Every quartic has a bitangent. So, take one, and use one of the two pseudo-
lines in the preimage for unprojection. Let S0 be the resulting cubic Del Pezzo surface.
By Corollary 19, S0 has a parametrization (C0:C1:C2:C3) by cubic through 6 base
points p1, . . . , p6. By projection, we introduce an additional base point p7. The first
three coordinate functions C0, C1, C2 (which are part of the parametrization of S) pass
also through p7. The fourth component of the parametrization of S can be computed as
F := L(C0, C1, C2)C3 + Q(C0, C1, C2), where L is the equation of the tangent plane
to the projection center (0:0:0:1), and Q is an arbitrary quadratic form. Hence F has
degree 6, and vanishes doubly at p1, . . . , p6. But L(C0, C1, C2) vanished doubly at p7,
therefore F also has a double point at p7.

Remark 25. A nonsingular plane quartic has exactly 28 bitangents. Because a Del Pezzo
surface of degree 2 is nonsingular iff its discriminant is nonsingular, we see that the
number of pseudo-lines on a nonsingular Del Pezzo surface of degree 2 is 56.

Let us now turn to Del Pezzo surfaces of degree 1. By definition, this is a surface
S ∈ IP1,1,2,3 defined by a polynomial F of weighted degree 6, subject to the following
conditions. We can write F (x0, x1, y, z) as c1z

2 + c2y
3 + F1yz + F2y

2 + F3z +
F4y +F6 for a suitable constants c1, c2 and polynomials F1, F2, F3, F4, F6 in x0, x1 of
degree 1, 2, 3, 4, 6, and we define the polynomial D(x0, x1, y) := discz(F ) (a weighted
polynomial of degree 6).

1. The discriminant D is squarefree, and c2 �= 0. (One can show that otherwise S is a
spoiled surface of minimal degree.)

2. The discriminant D has at most one triple point. (One can show: if D is squarefree,
and c2 �= 0, then it has at most two triple points, and if it has two triple points, then
S is not rational.)
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Similar as for Del Pezzo surfaces of degree 2, chopping of the coordinate z gives
a rational map of tracing index 2. The image is the weighted projective plane IP1,1,2.
There are two kinds of pseudo-lines. When the inverse image of a curve of weighted
degree 2, not passing through the point (0:0:1), splits into two components, both of
them are pseudo-lines of the first kind. The second type arises as the inverse image of a
curve of weighted degree 1, if this inverse image contains a singular point.

Example 26. Let S ⊂ IP1,1,2,3 be given by the equation

z2 − y3 − x4
0x

2
1 − 2x3

0x
3
1 − x2

0x
4
1 = 0.

The inverse image of y = 0 splits into two pseudo-lines y = z± (x2
0x1 + x0x

2
1) = 0 of

the first kind.
The unprojection map with respect to one of them is

(x0:x1:y:z) �→
(

x0:x1:
z + x2

0x1 + x0x
2
1

y
:y

)
.

Its image is the surface in IP1,1,1,2 with equation

(x3y − 2x2
0x1 − 2x0x

2
1)x3 − y2 = 0.

Example 27. Let S ⊂ IP1,1,2,3 be the surface in example 26. The point p := (1:0:0:0)
is a double point of S. There is a unique form of weighted degree 1 vanishing at p,
namely x1. This gives the pseudo-line z2 − y3 = x1 = 0. Its unprojection map is

(x0:x1:y:z) �→
(

x0:x1:
y

x1
:
z

x1

)
,

and the equation of the image is

y2 − x3
2x1 − x4

0 − 2x3
0x1 − x2

0x
2
1 = 0.

Theorem 28. Let S ⊂ IP1,1,2,3 be a Del Pezzo surface of degree 1. Then S has a
parametrization with the first two coordinate functions being cubics through 8 base
points, the third coordinate function being a sextic vanishing doubly at the 7 base points,
and the fourth coordinate function being a ninetic vanishing triply at the 7 base points.

The proof is similar to the proof of Theorem 24.

Remark 29. The number of pseudo-lines on a nonsingular Del Pezzo surface of de-
gree 1 is 240. See [12] for a proof.

The parametrization algorithm in sect. 6 can easily be generalized to Del Pezzo
surfaces of degree 2 and 1. The so constructed parametrizations are of the type described
in the theorems 24 and 28.
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8 Real Del Pezzo Surfaces

If the system of equations defining a complex Del Pezzo surface are real numbers, then
set of real solutions – if not empty – form a real algebraic surface, which we call a real
Del Pezzo surface.

Projection from real nonsingular points and unprojection using real lines (or pseudo-
lines in degree 2 or 1) works exactly as in the complex case. A new construction is the
projection from a pair (p, p′) of complex conjugate points. Both points must be nonsin-
gular, and not lying on a common line on S. The result is over the complex numbers
isomorphic to the result of two subsequent projections. The result can be realized as a
real algebraic surface, because it is the projection from the line pp′, and this is a real
line.

Similarily, we have a new construction of unprojection using a pair of complex
conjugate lines (or pseudo-lines). The two lines must not meet in a nonsingular point,
because otherwise unprojection from one line would delete the other line.

Projection and unprojection are real birational maps. The number of connected com-
ponents is invariant under real birational maps. But this number is not always the same
for all real Del Pezzo surfaces. For instance, there are cubics with one component and
cubics with two component. Other examples are given below. Therefore, the real graph
of Del Pezzo surfaces is not connected.

Here is the classification of maximal vertices of this graph. The proof is again be-
yond the scope of this paper; we refer to [20].

Theorem 30. Let S be a real Del Pezzo surface without a real (pseudo-)line and with-
out a pair of complex conjugate (pseudo-)lines that do not intersect each other. Then S
is one of the following.

1. one of the surfaces F9, F8, or G8, appearing in the complex classification Theo-
rem 16. All these surfaces have one component;

2. a surface in IP8 with parametrization (1:s:s2:t:st:(s2 + t2)s:t2:(s2 + t2)t:(s2 +
t2)2), which has one component;

3. a Del Pezzo surface of degree 4 with two components;
4. a Del Pezzo surface of degree 2 with three or four components;
5. a Del Pezzo surface of degree 1 with five components.

Remark 31. It is easy to see that surface 2 in the above classification is isomorphic to
F8 over the complex numbers. Over the reals, they are not isomorphic. In order to see
this, note that F8 has two one-parameter-families of conics, setting either s or t to a
constant parameter. But surface 2 has no real conic at all.

Example 32. Let S ⊂ IP4 be the Del Pezzo surface

x2
1 + x2

2 − x2
0 = x2

3 + x2
4 − x1x2 = 0.

There are no real lines on S, and 8 complex lines. These are the lines piqj , i = 1, . . . , 4,
j = 1, 2, where p1, p2, p3, p4 are the four real intersection points of the conic C :
x2

1 + x2
2 − x2

0 = x3 = x4 = 0 with the hyperplanes x1 = 0 and x2 = 0, and q1, q2
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p
1

p
2

p
3

p
4

Fig. 5. Left: Planar picture of a Del Pezzo surface with 2 components. Right: A quartic curve with
28 real bitangents.

are the conjugate complex points (0 : 0 : 0 : 1 : ±i). For each i = 1, . . . , 4, the line
piq1 is conjugate to the line piq2, and this pair of conjugates meets in pi. Since pi is a
nonsingular point of S (the only singularities on S are q1 and q2), unprojection is not
possible.

In order to see the two connected components, we project the surface onto the first
three projective coordinates. The complex image is the conic C. The real image is the
subset of points on the conic for which the form x1x2 is positive or zero. This subset
of conics has two components, namely the arc connecting p1p2 and the arc p3p4 in the
notation as in fig. 5 (left).

Example 33. Let F (x0, x1, x2) be the quartic equation

F = 17(x4
1 + x4

2) + 30x2
1x

2
2 − 160(x2

1 + x2
2)x

2
0 + 380x4

0,

and let S be the Del Pezzo surface with equation y2 + F in IP1,1,1,2. The quartic F
has 28 real bitangents (see fig. 5, right). Each preimage splits into pair of complex
conjugate pseudo-lines, intersecting each other in two real points on the surface, namely
the preimages of the tangential points. Therefore unprojection is not possible.

The surface has 4 components, each projecting onto one of the four components of
the subset of the plane defined by F ≤ 0 (the black regions in fig. 5, right).

Example 34. An example of a Del Pezzo surface with 5 components is given by the
equation

x6
0 + x6

1 + 2(x4
0 + x4

1)y − 0.9x2
0x

2
1y − y3 + z2 = 0

in IP1,1,2,3.

Since a real parameterization of tracing index 1 is a real birational map, only the
surfaces with one component may have such a parametrization. For all maximal vertices
in the real graph of Del Pezzo surfaces that have only one component, we have given a
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parametrization in Theorem 30. It follows that a real Del Pezzo surface has a birational
parametrization if and only if it has one component.

We can say a bit more: projection does not increase the degree of the parametri-
zation; and for the maximal vertices, we have given parametrizations of degree 3 and
4. It follows that every real Del Pezzo surface with one component has a birational
parametrization of degree 3 or 4.

For real Del Pezzo surfaces with two, three, or four components, one can construct
parametrizations which are not birational. No such construction is known for Del Pezzo
surfaces with five components. In particular, we do not know if the surface in exam-
ple 34 has a real parametrization or not.

Example 35. In order to construct a parametrization of the surface S in example 32, we
first give a parametrization of the arc p1p2 of the conic C:

(x0:x1:x2) =

(
1:

2(t2 + 1)

(t2 + 1)2 + 1
:
(t2 + 1)2 − 1

(t2 + 1)2 + 1

)
,

by composing a well-known parametrization of the conic with the function t �→ t2 + 1.
This is an algebraic way of restricting the parameter space to the interval [1,∞).

This parametrization is plugged into the equation x2
3 +x2

4−x1x2, leaving the prob-
lem of parametrizing a circle with radius 2t2(t2+1)(t2+2)

((t2+1)2+1)2 . Such a parametrization can be

computed by a projection from the point
(

t(
√

2t2−2)
t2+2t+2 , (

√
2+2)t2

t2+2t+2

)
to a line followed by

an unprojection:

(x0:x3:x4) =

(
1: t(−√

2t2+2−4ts−2ts
√

2+s2
√

2t2−2s2)
(t4+2t2+2)(1+s2) :

−t(−2t−√
2t+2s

√
2t2−4s+2ts2+ts2

√
2)

(t4+2t2+2)(1+s2)

)
The computation was done with the help of the computer algebra system Maple. Con-
catenation of these two parametrizations gives a parametrization of S with tracing in-
dex 2.

Remark 36. The technique used in example 35 can be used to parametrize arbitrary Del
Pezzo surfaces of degree 4 with two components (and therefore all Del Pezzo surfaces
with two components, because we can reduce to degree 4 by unprojection): compute
a projection with conic fibers, restrict the parameter space algebraically, parametrize
the parametric family of conics. A similar technique can also be used for Del Pezzo
surfaces with 3 components (see also [13, 17]).

In order to parametrize Del Pezzo surfaces with 4 components, it is theoretically
possible to use the construction in [19] which works over arbitrary fields. Unfortunately,
the so constructed parametrization has tracing index 24 and is very complicated. The
author computed a parametrization of example 33 with this method, but the output fills
several pages.
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