
R A T I O N A L  SURFACES OVER PERFECT FIELDS 

by Ju. I. MANIN 

RI~SUMI~ 

Let  k be  a perfect  field of  a rb i t r a ry  characteris t ic .  T h e  ma in  object  o f  this p a p e r  

is to establish some new objects associated with a lgebraic  surfaces F defined over  k which 

are invar iants  for b i ra t ional  t ransformat ions  defined over  k. The re  are two main  appl i -  

cations. T h e  first is tha t  i f  K is any  extension of  k of  degree 2, then  there are infinitely 

m a n y  bi ra t ional ly  inequiva lent  ra t iona l  surfaces (1) defined over  k which all become  

bira t ional ly  equivalent  to the p lane  over  K.  T h e  second appl ica t ion  is to a par t ia l  

classification of  the del Pezzo surfaces for b i ra t ional  equivalence over  k. For  our  

purposes a del Pezzo surface defined over  k is a nons ingular  ra t ional  surface wi th  a very  

ample  ant icanonica l  system, so the nonsingular  cubic surfaces are a special case. As 

we use the l anguage  of  schemes (3), we have  to p rove  some classical results in the new 

f ramework ,  no tab ly  some results of  Enriques  [7] on the classification of  ra t ional  surfaces. 

I n  the last section we p roduce  evidence for the conjecture tha t  i f  the field k is quasi- 

a lgebraical ly  closed (in the sense of  L a n g  [i i]) ,  then  a rat ional  surface defined over  k 

always has a point  on it defined over  k. 

We shall now describe the contents o f  our  p a p e r  in more  detail. 

S e c t i o n  o .  - -  P r e l i m i n a r i e s .  

Subsections o. I a n d  o. 2 recall  and  re formula te  theorems abou t  the resolution o f  

the singularities of  a surface and  abou t  the r emova l  of  the points of  i nde te rminacy  of  

a ra t iona l  m a p  (cf. A b h y a n k a r  [ i ] ) .  I n  subsection 0. 3 a curve  on a surface F is defined 

to be an effective Car t ie r  divisor and  also the subscheme belonging to tha t  divisor 

(cf. M.  Ar t in  [3]). I f  F is defined over  k, we denote  the cor responding  surface defined 

over  k" by  F | L e m m a  o. 3 states tha t  a necessary a n d  sufficient condit ion for a divisor 

on F |  to arise f rom a divisor X on F (defined over  k) is tha t  it should be invar ian t  unde r  

(:) A surface defined over k is rational if when considered over the algebraic closure k of k it becomes bira- 
tionally equivalent to the plane. 

(2) In particular, we use the terms "proper " (CO6CTBCHHbI~) and " regular" (peryaapnbi f i )  instead 
of the classical " complete " and " nonsingular ", respectively. 
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the action of every element s of the galois group G =G(k-/k)(cf. Cartier [5]). Section o.4 
gives the following necessary and sufficient condition for a proper regular k-surface (1) 
to be k-minimal, i.e. such that every birational k-morphism f :  F-+F' ,  where F' is a 
regular surface, is an isomorphism: 

Lemma (0.4).  - -  A proper regular k-surface F is k-minimal i f  and only i f  for every irre- 
ducible exceptional curve (3) X of  the first kind on the -l~-surface F |  there is an element s of 
the Galois group G such that s(X) + X and the curve X + s(X) is connected. 

The necessity of the condition follows from the Lemma of Mumford [13] about 
the negative definiteness of the intersection matrix of the irreducible components of the 
kernel of the corresponding }--morphism . f  : F| -+ F'| Conversely, if there is an 
exceptional curve X of the first kind which does not meet any of its conjugates s(X) + X, 
then a standard argument provides a k-surface F' and a k-morphism f : F-+F'  whose 
kernel is precisely the union of X with its conjugates (cf. M. Artin [3])- Finally the 
Lemma of Subsection o.5 states that the monoidal transformations F ' -+F whose 
centre is a closed point of F correspond precisely to the monoidal transformations 
f : F ' N k - - + F |  whose centre is of the type [.J x~, where xx, . . . , x ,  eF| is a 

l < . i ~ n  
complete set of closed points conjugate over k. 

S e c t i o n  x. - -  E n r l q u e s ' T h e o r e m .  

In this section we generalize results of  Enriques to surfaces defined over a general 

perfect field k. 
Theorem (x.2). - -  Let F be a rational k-surface. Then there exists a proper regular 

k-surface F' quasirationally equivalent (3) to F, a k-curve C and a k-morphism f :  F'-+C with 

the following properties: 
a) The curve C is proper, regular, geometrically irreducible and reduced (~), with arithmetic 

genus pa(C) = o .  
b) Let x be the generic point of C. Then the generic fibre F'~ o f f  is a proper, geometrically 

regular, geometrically irreducible t,(x)-curve, with arithmetic genus p~(F'~) either o or I. 
For, following Serre [I9], we show that there is an integer n>~o such that (1.2. I) 

holds, where ~0 F is the canonical sheaf. Then a pair of linearly independent sections 
So, s1~H~174 determine a k-map g : F->-P~, which may be supposed to be a 
k-morphism on applying appropriate monoidal transformations to F. The curve C is 
then taken to be the integral closure of the scheme P~ in the field of functions R(F) of F. 
Then p~(C)=o because F is a rational surface. The arguments of Serre [19] show 

(x) I.e. a surface defined over k .  
(3) I.e. with ar i thmet ic  genus P a ( X ) =  o and  self-intersection (X, X ) = -  1. 
(3) In  characteristic zero this is the same concept as birationally equivalent  over k. In  the  general  case, two 

surfaces F and  F '  are said to be quasirat ionally equivalent  if there is a k-surface F"  and  two radicial domina t ing  
k-morphisms 

f :  F"--->F; g : FH-->Fq 

(4) I.e. no ni lpotent  elements in the s tructure sheaf. 
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that ( i .2 .2 )  holds. I f  F, is reduced, this completes the proof. In the general case one 
has to invoke a result of Grothendieck (Prop. 4 .6 .6  on p. 6 9 of [8], Part IV). 

In  all that follows we shall consider only birational classes of surfaces for which 
there is a map onto a curve with the properties enunciated in Theorem x. 2. In charac- 
teristic 4= o this is equivalent to neglecting radicial morphisms. 

A k-morphismf  of the type described gives F the structure of a C-scheme. We shall 
say that F is C-minimal if every diagram 

F t " > C ,  

'l / ,  
F' 

where g, h are k-morphisms and g is birational, implies that g is an isomorphism. Over 
the algebraic closure k we define the k-morphism . [=f |  : F |  -+ C |  in the obvious 
way. Then the (C| of F |  is equivalent to the absence of exceptional 
curves in the fibres, whereas, by Lemma o. 4, the C-minimality of F is equivalent to the 
statement that every exceptional curve in a geometrical fibre intersects one of its 
conjugates. 

Theorem (x.5). - -  I f  the C-surface F is C-minimal and the generic fibre has genus I, 
then F | is ( C | k )-minimal. 

The proof depends on the 
Lemma (1.5). - -  Let F| be some (C| morphism and for a closed 

point x ~ C N-k suppose that the fibre F'~ has the two foUowing properties: 
a) Each irreducible component X has either (X, X ) < o  or pa(X)+o.  
b) I f  X~, X i  are distinct components of the fibre and also exceptional curves of the first kind, 

then X~.+X i is not connected. 
Then the fibre (F| enjoys the same properties. 
The proof of Lemma i.  5 follows by induction from the easy case of a monoidal 

morphism. To prove the Theorem i.  5 we note that if the k--morphism F'-->C| with 
generic fibre of genus i gives a (C| surface, then the geometric fibres satisfy 
the conditions of Lemma I. 5 from the classification of the possible fibres given by Kodaira 
and N~ron [15]. By the Lemma, the geometric fibres o f [  must satisfy the same condi- 
tions: and on comparing condition b) with Lemma o. 4 we deduce that the geometric 
fibres o f f  cannot contain exceptional curves of the first kind, so F| is (CQk)-minimal, 

as required. 
Theorem ( I .6 ) .  - -  Suppose that the surface F is C-minimal and that the genus of the 

generic fibre is zero. Then there is a (C| F' and a birational (C| 
g : F| such that: 

a) The structural morphism F'-+CQk- makes F' a ruled surface with fibre P~. 
b) The morphism g is either an isomorphism or a monoidal transformation with its centre 

at a finite number of closed points of F' lying on distinct fibres. The sum of the g-inverse images 
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of those fibres on F| is G(-k/k)-invariant and is a collection of  a .finite number of orbits each 
of  the form 

- - I  - - I  - - I  - - I  - - I  - - I  

(i.e. a set of  pairs of intersecting irreducible curves of  genus o, each with self-intersection --i).  
For F' is obtained by blowing down the exceptional curves contained in the fibres 

of F| -~ C| 
Theorem (~.7).  - -  Let F |  C N k  be a rational (C| where CNk-=P}  

and the generic fibre has genus I. Then the rank n(F | of the group Num(F @k-) of classes 

for numerical equivalence is I o and there is a birational -k-morphism - F |  For every 

irreducible exceptional curve of  the first kind X c F |  we have (X, F~)=a,  where the number 
a is defined by the condition 

cor|174 r174 
For any irreducible reduced curve X c F N k  with p ~ ( X ) = o  satisfies 

a((X, X ) +  2 ) = ( X ,  F~), 

where x~C| is arbitrary and a is defined above. Hence there are no such curves 
with (X, X ) < - - 2 ,  all the curves with (X, X ) = 2  are components of fibres, and all 

exceptional curves of the first kind satisfy (X, F z ) = - - a .  Let g : F Q k ~ F '  be a bira- 

tional morphism onto a k--minimal surface. Then it follows that F' is isomorphic to p2, 
pl |  pt  or to the ruled surface F2, the standard section of which has self-intersection - -2 .  

The existence of the k-morphism - 2 FQk-->P~ in the latter two cases follows from a 

detailed discussion. Finally, Noether's formula implies (car, c0v )+n(F |  , and 
so n ( F |  

Finally we discuss ruled rational k-surfaces. Each of these is the k-form of one of the 

surfaces F~, where F, in Grothendieck's notation ([8], Chap. II) is P(d)r~(n)| 
For n>~I there is a canonical section s~: PI-~F~, the image of which is the unique 
curve on F~ with index of self-intersection --n.  In the remaining case n = o  we have 
F 0 = p t x  P~, and so the forms of F 0 are just the 2-dimensional quadrics. Otherwise we 

have 
Theorem (x .lO). - -  a) (1) For n -  I (mod. 2) the only k-form OfF, is F, itself. 
b) For n=-o (mod. 2), n>>.2 the k-forms o f  F, are in i - - I  correspondence with the 

k-forms o f  the projective line p1, the correspondence being between the surface F and the curve with 
self-intersection - - n  lying in it. 

(1) In  [I2] it was erroneously asserted that the statement in b) is true for all n. 
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S e c t i o n  2.  - -  S o m e  b l r a t i o n a l  i n v a r i a n t s .  

For a regular k-surface F we shall denote by N(F)=Num(F |  the group of 
divisor classes on F |  for numerical equivalence. It can be regarded as a G-module 
(where G is the Galois group of k/k) and has a non-degenerate G-invariant pairing 
into Z given by the index of intersection. A k-morphism f :  F-->F' determines a 
G-homomorphism 

f * :  N(F) ~ N(F').  

If  F and F' are proper a n d f i s  birational, then f*  is a monomorphism and preserves the 
index of intersection. In this case we can define the canonical homomorphism 

f .  : N(F') -+ N(F) 

by (f.(~),~q)=(~,f*(~)) for all ~6N(F). 
We denote by ~(k) the category whose objects are the proper regular k-surfaces 

and whose morphisms are the birational k-morphisms. 
We recall the welt-known 
Lemma (2 .  x) .  - -  Let  f :F ' - - -~F be a morphism in the category ~B(k). Then there is a 

direct decomposition 
N (F') = I m f * §  K e r s  

of G-modules (cf., e.g. Nagata [i4] ). If, further, f is a monoidal transformation with centre at 
a point xeF,  then K e r r .  is generated by the components of  the geometric fibre f - t ( x ) |  and 
with respect to this basis the intersection matrix on K e r f .  is - - E .  Further I m f *  and K e r f .  
are orthogonal with respect to the intersection index. 

We denote by ~(k) the category of continuous Z-free modules of finite rank. We 
shall call an element of ~(k) trivial if it is isomorphic to a direct sum of a finite number 
of modules of the shape Z[G] | where H runs through the open subgroups of G 
and H acts trivially on Z. 

We can now enunciate our key 
Theorem (2.2).  - -  A necessary condition that the k-surfaces F, F' in the category fB(k) be 

birationally equivalent over k is that there exist trivial G-modules M and M'  such that 

N(F) + M '  ~ N(F') + M .  

For since a birational equivalence can be decomposed into monoidat transfor- 
mations it is enough to consider these : and for these Theorem 2.2 is an almost immediate 
consequence of Lemma 2. I. In what follows we shall consider only the G-module 
structure of N(F). It  would be possible to give finer invariants by considering the index 
of intersection and the behaviour of the canonical class, but we have not seen how to 
exploit this. In fact we use only the following 

Corollary (2.3). A necessary condition that F, F' be birationally equivalent over k is that 

Hi(K, N(F))----Ha(K, N(F')) 

for all finite extensions K ~ k. 
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We note in passing that the category ~(k) is dual to the category of k-tori, and so 
the work of Ono [i 6] provides further invariants, for example the Tamagawa number 
of the torus N(F) ~ dual to N(F). In fact the zeta-function of the torus N(F) ~ and the 
surface F itself are connected as intimately as the zeta-function of a curve and its Jacobi 
variety. 

As a first application of Theorem 2.2 we prove 
Theorem (2.5).  - -  Suppose that k possesses a quadratic extension K. Then there exist 

infinitely many rational k-surfaces F which are birationally inequivalent over k, but which all become 
birationally equivalent to the plane over K. In other words the kernel of the map 

Ht(k, Cr) -*~ H~(K, Cr) 

is infinite, where Cr=Aut-k(x ,y) / -k  is the Cremona group. 
For the proof, we consider the surface 

XoYofra(Zo, Zl)= XlYlgm(Zo, Zl) 

on the direct product P~•215 of 3 projective lines with respective homogeneous 
coordinates, where fro, gm are forms of degree m with coefficients in k such that fmg,~ has 
no multiple factors. Then F is birationally equivalent to the plane (for consider the 
map onto P~• got by throwing away the y-coordinates). The surface F has a 
biregular automorphism of order 2, namely intechangeing (x0, Xl) and (Yo,Yl). Let F h 
be the k-surface obtained by twisting F with respect to the cocycle which maps the 
nonidentical automorphism of K / k  into this automorphism of F. It turns out that 

Ht( k, N(Fh)) = t(Z~)~-~ iffmgr~ has a divisor of odd degree 
((Z,) ~-1 otherwise; 

where • is the number of divisors offing m. In particular, i lk  has infinitely many elements 
we may chose fro, g,~ which factorize into linear factors over k, and then 

Hi(k, N(F) )  ,~ (Z2) 2m-~ 

By Theorem 2.3 the F h obtained with different values of m are birationally inequivalent. 
This proves Theorem 2.5 except when k is a finite field, when a slightly more subtle 
argument is needed. 

In evaluating N(F h) we use the following Lemma, which is perfectly general and 
also required in Section 3- 

Lemma (2.9). - -  Let Fe~3(k) and let {X~}cF| be a a-invariant set of irreducible 
curves the classes of  which generate N(F). Let S be the group of  divisors generated by the X~. and 
let S o C S be the subgroup of divisors numerically equivalent to o. Let H c G be a normal subgroup 

of finite index which acts trivially on the X~ and put N =  Y. g~Z[G/H].  Then 
g~O/H 

Ht(k, N(F)) ~ H- I (G /H ,  N(F)) ~ (NS nSo)/NS o. 
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Here the second isomorphism is a consequence of the exact sequence 

o ~ S o ~ S ~ N ( F  ) ~ o .  

The first isomorphism is not a natural one, but follows from the case p = i of the natural 
isomorphism 

Horn (H-P(G/H,  N(F)),  Q/Z) -+ HP(G/H, N(F)) ; 

which itself follows from the tkct that N(F) is Z-free and has a nondegenerate pairing 
into Z (cf. [4], Chapter XI I ,  Corollary 6.5). 

In the application of Lemma 2.9 to Theorem 2.5 one takes for S the 4 m lines on 

which fm(Zo, zl)g,,(Zo, z l ) = o  together with the two lines X 0 : x 0 = y l = o ;  X 1 : x l=y0=o .  

S e c t i o n  3.  - -  D e l  P e z z o  s u r f a c e s .  

A regular rational k-surface F is called a del Pezzo surface if the sheaf (OF ~ is very 
ample and the anticanonical system has no fixed components. We first discuss the 
geometry over an algebraically closed field and require 

Lemma (3.2).  - -  Let F be a regular rational -k-surface for  which (o~F, coF)>~ I and let X 

be an irreducible curve on F for which (X, X ) ~ o .  Then only the three following cases are 
possible: 

a) X is an exceptional curve of the f irst  kind and (X, co~-l)=I. 
b) X is a component of  a f ixed curve of  the anticanonical system. 

c) (X, X ) = - - 2  and pa(X)=o ,  (X, r - 1 ) - o .  
The proof is a fairly straightforward computation using the Riemann-Roch theorem 

on F and the formula for pa(X) in terms of (X, X) and (X, ~oF). An immediate 
consequence is 

Corollary (3.3).  - -  An irreducible curve with negative self-intersection on a k-del Pezzo 

surface is an exceptional curve of the f irst  kind. The injection F--->P" with n=((oF, cos) defined 
by the anticanonical sheaf takes the exceptional curves of the f irst  kind on F precisely into the straight 

lines in the image. 
This gives us at once the geometric form of the de1 Pezzo surfaces: 

Theorem (3- 4). - -  Let F be a -k-del Pezzo surface and put n = ((OF, coF). Then 3 <~ n <~ 9 
and we have 

a) When n=9 ,  then F is isomorphic to p2. 
b) When n=8,  then F is isomorphic either to p l •  or the image o f P  2 under a monoidal 

transformation with centre at a single closed point. 

c) When 3<~n<<. 7, then F is isomorphic to the image Of P~ under a monoidal transformation 

with centre at 9 - - n  closed points, no three of  which lie on a straight line and no six on a conic. 

d) Every exceptional curve on F is the image of  either a point of the centre of  the monoidal 

transformation, or of the straight line through two such points, or of the conic through five such points. 

For one considers the birational morphism p :F-~-F' onto a minimal model. 
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The only F' possible are P~ and p l •  p1. For n~< 7 there is in any case a morphism 
F ~ P  2 by the arguments of Theorem 1. 7. The rest follows from a computation of 
indices, using Noether's formula. 

We later need the 

Corollary (3.4).  - -  The exceptional curves of  the first kind on a del Pezzo surface F gene- 
rate N(F). 

We now consider del Pezzo surfaces over a general perfect field k. Before consi- 

dering the different values of n separately we make some general remarks. 
Let F be a del Pezzo surface canonically embedded in pn. On intersecting F 

with a sufficiently general hyperplane pn-~ and performing a monoidal transformation 
with centre F n P  n-z on F, we obtain a surface F' with a pencil of elliptic curves over the 
projective line B, the basis of the pencil of hyperplanes in Pn through the P"-Z: and F' 
is B-minimal. Hence the birational k-forms of a del Pezzo surface are particular cases 
of the k-forms of surfaces with an elliptic pencil: they are obtained by blowing down a 
k-curve which splits over k into the union of n nonintersecting irreducible curves of the 
first kind which are also sections of the elliptic pencil. 

By Theorem 3 .4  all del Pezzo surfaces with fixed n~>5, n:t:8 are k--isomorphic and 
for n = 8  there are only two isomorphism classes. Hence we can classify their biregular 
k-forms. After that a special investigation, different for each case, shows that the exis- 
tence of a k-rational point is equivalent to the birational triviality of the surface. Further, 
at least for n>~ 6, the question of the existence of a rational point in the most interesting 
case, namely when k is an algebraic number field, turns out to be a purely local one: 

the Hasse principle is valid. 
The cases n = 3 ,  4 are much more difficult. Now the criterion of Corollary 2. 3 

permits us to establish the existence of birationally nontrivial k-forms, even over a finite 
field k or for k = It, which possess k-rational points. Here we limit ourselves to a detailed 
exposition of the case n =4 .  The detailed computation of the cohomology in the general 
case becomes here very cumbersome. It may be that one should use the connection 
between this class of surface and the Weyl groups of the exceptional simple Lie groups. 
I hope to return to this question later. 

To compute the group Hi(k, N(F)) for the application of Corollary 2.3 we must 
know something about the intersection properties of the exceptional curves. For 3 ~< n ~< 6 
let d~, denote the graph whose vertices correspond to the lines on a del Pezzo surface 
of degree n, and where a pair of vertices are joined if the corresponding lines have 

an intersection. It is easily seen from Theorem 3 .4  that oz, is unique up to isomor- 
phism (1). Let P~ be the group of automorphisms of gn. 

Proposition (3.6) .  - -  a) There is a natural embedding gnCdn--1 in which ~ is identified 
with the set of elements not meeting a f ixed element of  @~_ 1. 

(x) Of  course g"n does not exhaust the possible information about the intersections of the lines. For example 
on a cubic surface it may or may not happen that three lines are concurrent. 
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b) F n acts transitively on #~ and the stability group of  any element is isomorphic to F ._  1. 

c) The orders [ ~ ] ,  [In] of d~., F n respectively are given in the following table: 

[r.] 22 .3  

IO 

23.3.5 

4 

16 

2 7 . 3 . 5  

27 

27" 34. 5 

All this is classical and straightforward. We give a proof in the Russian version 

only for lack of a suitable reference. 

One may ask whether the full group F, can be realized as a Galois group acting 

on the fines (1). For n = 6, 5, 4, 3 this follows from the case n = 3, the non-singular 

cubic surface in P~. Let U be the complement on the surface of the discriminantal 

hypersurface in the space of the coefficients of cubic forms in 4 variables. The 

group rq(U, u) clearly acts on the set of lines of the cubic surface corresponding to a 

point u~U. Segre [18] asserts that the image of r:I(U, u) is the complete group F 3 
of automorphisms of @,, at least over the complex field. 

We now discuss the separate n. 

Theorem (3.7). - -  Let F be a k-del Pezzo surface of degree n. 
a) For n = 9 ,  F is k-isomorphic to a Severi-Brauer surface. 
b) For n----8, F is isomorphic either to a quadric or to the image of  p2 under a monoidal 

transformation with centre at a k-point. 
c) For n =7,  F is k-isomorphic to the image of p2 under a monoidal transformation with 

centre at two k-points or with centre at a closed point x ~P  ~ for  which [k(x) : k] = 2. 

Corollary 1. - -  A del Pezzo surface of degree 7 always has a rational point. 

Corollary 2. - -  Let k be a f ield of  algebra# numbers (o f  finite degree) or a J~eld of func- 

tions of transcendence degree I over a finite field. I f  a del Pezzo surface of  degree 7 or 8 has a 
rational point over all local completions k~ of  k, then it has a rational point over k. 

Corollary 3. - -  A necessary and sufficient condition for a k-del Pezzo surface of  degree 7, 8 
or 9 to be k-birationally trivial is that it possess a k-point. 

All this follows immediately from Theorem 3.4, Lemmas o. 4 and o. 5 and well 

known results. 

The treatment of the case n = 6  is more complicated and depends on the fact 
that F \ X  has the structure of k-homogeneous space over a certain 2-dimensional torus, 
where X is the union of the exceptional curves. Before enunciating this result in detail 

we must describe a general construction which generalizes one of Serre [22]. 

(1) The possibility discussed in the last footnote of the concurrence of three lines certainly limits the possible 
galois groups. 
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Let V be a proper irreducible and reduced algebraic k-scheme and let {X~} c V |  
be a finite set of divisors each of which is an irreducible and reduced subscheme 

of V| Let S O be the group of principal divisors generated by {X~.} and let 

RcR(V| be the group of rational functions on V| whose divisors are in So, 
so Rcr(V| X,, cv| A section qb : So-+R of the exact sequence 

(a. 8. x ) o-+k-* ~ R - + S o  ~ o  

determines a ring homomorphism 

~[s0] -+ ~[R] - ,  r ( v |  Ov| 

and so the k--morphism 

f :  V |  X,-+  Spec k-[So] = T |  , 

where T = Spec k[S0]. 

Suppose now that the divisor ~X~ is G-invariant (G as always the Galois group 

of k/k). Then (3.8. i) gives the exact sequence 

o -+ Homz(S o, k-*) -+ Homz(S 0, R) -+ Homz(So, So) -+ o, 

in which Homz(S 0, k-*)=T(k-) is the group of geometric points of T. We denote 

by heHl(G1, T(k))  the image of ids, under the connecting homomorphism 

: Homa(So, So) -+ Hi(G, T(k-)). 

This is the characteristic class of the G-extension (3- 8. I) and at the same time it defines 
a principal homogeneous space T h of T over k. Finally let X c V  be a divisor such 

that X |  on V| 

Proposition (3-9)- - -  With the above notation define a k-morphism 

g : V \ X  -+ T h 

by means of the ring homomorphism 

(~[s0])~ + (~-[R])O _+ r~  | ~ \  U x,,  Ov | b = r ( v \ x ,  ~v), 

where the action of G on k-[S0] is determined by means of the cocycle h in such a way that 

Spec(k-[S0])~ h. Then g |  with the appropriate identification of T| Th| 
Further, g does not depend on the choice of section ~.  

The proof is essentially a formal calculation with the explicit forms of cocycles. 

In our special case we have 

Theorem (3. xo). - -  Let F be a k-del Pezzo surface of degree 6 and let X l ,  . . . ,  X o c F |  

be the exceptional curves of the first kind. Let X a F  be a divisor such that XQ}-=~X~ and 

put U -~ F \  X.  Then the torus T = Speck [So] is 2-dimensional and the map of the scheme U 

into a principal homogeneous space over T described in Proposition 3.9 is an isomorphism. 
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Since all del Pezzo surfaces of  degree 6 are k-forms of  each other, it is enough to 

verify Theorem 3. io for one of them, say the F c P t • 2 1 5  t given by the equation 

Xo Y0 z0 --= xl Yt zl 

where (xo, xl), (Yo,Yl), (z0, zl) are the three sets of  homogenous coordinates. In  this 

case we take for ~(S0) c R  the group of  functions generated by x~ Y0 and  z0. I t  is clear 
xa' Yl zl 

x0 Xl y0 
that  F \ X  ~ Speck  ~1' is an isomorphism. 

xo' .h  ' Yo] 
Corollary 1. ~ A necessary and sufficient condition for a del Pezzo surface of  degree 6 to 

be birationally equivalent to the plane over k is that it possess a rational k-point. 

We may  suppose that  F is k-minimal, since otherwise we are reduced to a del Pezzo 

surface of  higher degree for which the result is a lready proved (Cor. 3 of  Theorem 3.7)- 
L e m m a  0. 4 then limits the possible orbits of  G on the X d in part icular  they cannot  

contain any G-invariant  points. I f  now x is a rational point on F one can obtain a 

birational equivalence with a quadric  by first blowing up x, so getting a del Pezzo 

surface F'  of  degree 5, and then blowing down a set of  three appropriate lines on F' .  

Since the quadric  has a k-point, it is birationally trivial, so F is trivial. 

Corollary 2 (1). __ A del Pezzo surface of  degree 6 defined over an algebraic number f M d  or 

over a function f M d  k has a k-point i f  and only i f  there is a kp-point for  every local completion k~. 
This follows from Voskresenskij's result [25] that  the Hasse Principle holds for 

2-dimensional tori. 
To deal with n =  5 we need another  general theorem about  rat ional  points on 

del Pezzo surfaces. 

Theorem (3-I2) .  - -  Let F be a k-del Pezzo surface of  degree n. 
a) I f  the f M d  k is infinite, suppose further that there is a zeN(F)  Q for  which (Z, co~ 1) 

is relatively prime to n. Then F has a k-point. If, further, there are no G-invariant exceptional 

curves of the f irs t  kind on F| (e.g. when F is k-minimal) then there is a k-point not on an excep- 

tional curve. 
b) I f  k is finite, then every rational k-surface has a k-point. On a del Pezzo surface of 

degree n one can f ind  a k-point not on an exceptional curve provided that the number q of  elements 

of  k satisfies 
q> I o + e n - - n ,  

where e, is the number of  irreducible exceptional curves of the f irst  kind on F | 
The finite field case b) follows from Weil's results [24] about  the number  of  k-points 

on rational k-surfaces. I t  would doubtless be possible to improve the bound  for q 

(1) This implies in particular Selmer's result [23] that over an algebraic number field a surface of the type 
x z q- ay s = b (z z q- at s) 

satisfies the Hasse principle. For as Segre Ix7] remarks there is a triplet of lines which can be blown down over 
the ground field. The same result is true for any cubic surface with such a triplet. 
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somewhat, but  that some bound is needed is shown by the deI Pezzo surface of degree 5 

over the field k of  2 elements obtained by blowing up four k-points in the plane. 
In the general case a) we need the following Lemma due essentially to Igusa [9]. 

Lemma (3. z3). - -  Suppose that k is infinite and let F be a regular projective k-surface 

of degree n. Then there is a k-morphism f :  F'-+F such that f |  is a monoidal transformation 

with centre at closed points of F| and a k-morphism p : F ' - + P  1 such that 

p*(Ol , , ( I ) )  = f * ( O F ( I ) )  | C F , ( - - X ) ,  

where X is a divisor on F' blown down by f .  Further, we may suppose that all the fibres of p are 
geometrically irreducible. 

For one considers the pencil of intersections with a sufficiently general pencil of 
hyperplanes and blows up the base points of the pencil. 

I 1 -- To prove Theorem 3. I2 we show that there is a G-invariant section P g ~ F  | 
We omit the rather elaborate details. The image of the section in F is a k-curve of genus o 
(with a k-rational point) which is distinct from the exceptional curves. The proof may 
be seen to generalize to surfaces with an anticanonical system without fixed components 
of  degree 2. 

The application to del Pezzo surfaces is 

Theorem (3. x5) (1). __ Let F be a k-del Pezzo surface of degree 5, and K a normal extension 
of k of degree d prime to 5. I f  F |  has a K-point, then F is birationally equivalent to P~. 

Suppose first that there is a k-point x on F. I f  x is not on an exceptional curve, 
let F' be obtained by blowing up F. The image of x is met by a set of 5 nonintersecting 

irreducible exceptional curves on F' | The union of these 5 curves is thus G-invariant 
and by blowing them down we obtain a Severi-Brauer surface, which is trivial since it 
contains rational points. The cases when x is on precisely one exceptional curve and 
on the intersection of  two are dealt with by variants of this technique. 

By Theorem 3-12 b) this concludes the proof for finite k. Otherwise we have to 

show that the hypotheses of Theorem 3- 15 imply the existence of a k-point. It is enough 
to show that the hypotheses of Theorem 3.12 a) follow from those of Theorem 3. i5. 
Indeed arguments similar to those above show that the existence of a K-rational point 
implies the existence of a curve X with (X, c0F) ~ o  (s) on F |  (which we now know 
is birationally equivalent to PI~). Let Z C F be such that Z |  is the sum of all the 
k-conjugates of X. Then (Z, coF) ~ o  (5), which is all that was needed. 

Finally we come to the case n = 4. This is distinguished from the cases already 
discussed not merely by its greater complexity but because (i) a surface of degree 4 
with a rational point need not be birationally trivial (2) (ii) the surfaces are not necessarily 

(1) I have been unable to verify the assertion of Enriques [7] that every del Pezzo surface of degree 5 has a 
rational point. 

(3) Similarly Segre [17] showed that a minimal cubic surface is blrationaUy nontrivial, although it is easy 
to construct examples with rational points. 
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k-forms of  each other and (iii) the criterion of Corollary 2.3 can be used to demonstrate 
the nontriviafity of certain surfaces (while it cannot for n~> 5)- 

The del Pezzo surfaces of degree 4 are of special interest because they are connected 
with one of the simplest Diophantine systems of equations: two quadratics in 5 variables 
(cf. Section 4 below). It would be interesting to know whether the Hasse Principle 
holds for it. Again the question of the birational triviality of a cubic surface with a single 
rational line, left open by Segre [I7] , reduces to this case. Our  criterion gives a partial 
answer (twelve cases out of 19, see below). 

In order to apply Corollary 2.3 we have to compute Hi(k, N(F)) for del Pezzo 
minimal surfaces of degree 4. It is first necessary to compute the number of possible 
dissections into orbits (t) of the set of lines on F |  under the action of the Galois 

group G. It turns out that there are 19 types. For each it is automatic to compute 
Ha(k, N(F)) by means of Lemma 2.9. For io of the 19 types it is nontrivial, so F is 
nontrivial and for the remaining 9 it is trivial. In two of these cases F is nontrivial 
because Hi(K, N(F)) is nontrivial for an appropriate extension K ofk.  I do not know 

whether F can be trivial in the remaining 7 cases, though we shall show in one of them 
that Hi(K, N ( F ) ) = o  for all extensions K of k. 

We shall use the following representation of the graph d4: 

( 3 . I 7 . I )  

4 4 

3 3 

2 2 

I I 

8 g 

7 7 

6 

5 5 

Here, in addition to the edges shown, each point is connected with precisely one of the 
vertices of  each of the pairs on the other side of the vertical fine, and, in particular, a 
left (right) vertex is connected with the left (right) vertex of the pair on the same line and 
with the right (left) vertex of the pairs on different lines. Thus the vertex i is joined 

to i-, 5, 6, 7, ~" 
Lernrna (3. I8).  - -  The graph just described is isomorphic to 84. 
Corollary. - -  The group I" 4 of autorrnorphisrns of ~4 acts transitively on the subgraphs of 

the type �9 
The proofs are routine. We shall describe (3-I7.  i) as the canonical graph. 

We shall call a subgroup F CF 4 admissible if no subgraph corresponding to an orbit 
consists of isolated vertices. By Lemma o .4  and the remark preceding Theorem 3-7 

(1) Fortunately this suffices to compute Hi(k, N(F)), and we do not need to find the number of types of group 
action. 
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in this r~sum6, the admissible groups are just the possible images of Galois groups acting 
on minimal surfaces. 

Lemma (3.x9). - -  Let Z1, . . . ,  Z ,  be the subgraphs corresponding to the orbits of some 
group acting on ~4. Let a, be the number of vertices of Z r and let lr~ be the number of edges going 
from a f ixed vertex of  Z,  to a vertex of  Z s. Then l,s is independent of  the choice of vertex and we 
have the equations 

Z l~ = 5 
8 

a, lr, = a e lsr 

Za ,  = 16 

The group is admissible i f  and only i f  l,s>~ I for all r: and then a,>~ 2. 
Lemma (3-2o). - -  Let I ~ C F~ be an admissible group. Then each orbit consists of  6, 12 

or 2 ~ ( I~<~4)  vertices. 
Lemma (3.2x). - -  Suppose that I" is admissible and that there is an orbit of 6 or 12 vertices. 

Then after a suitable identification of  g4 with the canonical graph the orbits Z i are given by one of 
the three diagrams in (3.21. I) (see Russian text) (1). 

Lemma (3.22). - -  Suppose that I" is admissible and that all the orbits have 2 ~ vertices for 
some ~. Then after a suitable identification of g 4 with the canonical graph, the orbits Z~ are given 
by the 16 diagrams in (3.22. x) (see Russian text). 

Lemma (3.23). - -  Let F be a group of automorphisms of the canonical graph corresponding 
to the case X V I I I  (diagram (3.22. i)). Then I" has a subgroup of type IV. 

Lemma (3.2,t). - - L e t  P be a group of automorphisms of the canonical graph of  type XII .  
Then it has a subgroup either of type IV or of  type VI. 

These five lemmas are all finite combinatorial statements which can therefore be 
verified in a finite amount of time. 

Lemma (3.25). - -  Let each subgraph of  the canonical graph correspond to the divisors 

on F| given by the sum of  the lines corresponding to the vertices. Then the group of principal 
divisors spanned by the lines is generated by the differences of  pairs of cycles corresponding 

? 

to squares [ 

,k 

The proof is straightforward. 
We can now compute Hi(k, N(F)) in terms of the dissection D : l~<y~< Z~ of the 

canonical graph into orbits. Let ai be the number of vertices of Z~ and let d=lcm(a~). 
Let C o be the group of o-dimensional chains of g4 and let N D : C ~  ~ be the homo- 

morphism defined by NDx=  d ~ y for xeZ~. Denote by P the kernel of the pairing 
at vezi 

on C O induced by the index of intersection. 

(1) In  this case one can  show tha t  5 does not  divide the order of  r ,  which mus t  therefore be of  the type 3.2~. 
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Lemma (3. ~'7)- - -  Let D be the dissection of  the canonical graph into orbits corresponding 
to a k-del Pezzo surface of degree 4. Then in the above notation 

Ht(k, N(F)) = NDC~ P/NDP. 

This follows easily from Lemma 2.9. 
We are now in a position to construct table 3.28 of the Russian text. The first 

column gives the type, the second a set of generators of N D C O n P, where Z~ denotes ~ x. 
z~  Zi 

The third column gives Ht(k, N(F)). When this is nonzero, the surface is birationally 

nontrivial by Corollary 2.3. In types X V I I I  and XI I  the surface is nontrivial in virtue 

of Lemmas 3.23 and 3.24 and because types IV and VI are nontrivial. 
Finally we note that it can be shown that r has order 6 in case II,  and a further 

exmination shows that Hi(K, N ( F ) ) =  o for all extensions K3k .  

S e c t i o n  4 .  - -  R e m a r k  o n  r a t i o n a l  p o i n t s .  

The following statement appears to me to be probable. 
Conjecture (4. x ). - -  Every rational k-surface F has a k-point i f  k is quasi algebraically 

closed (1). 
After Theorem 3.12 it is enough to consider infinite fields. For these we have 

Theorem (4.2). - -  Conjecture (4. I) is true for rational surfaces with a pencil of curves 
of genus zero, for forms of the absolute minimal models and for del Pezzo surfaces of degree n 4= 5. 

For surfaces with a pencil of curves of genus o this follows from a repeated appli- 

cation of the fact that the Brauer group of k is trivial. 
The absolutely minimal models are forms of ps, p l •  p1 or ruled surfaces. The 

forms of p2 are the Severi-Brauer varieties, which are trivial because the Brauer group is. 
The forms of p l •  p1 are embeddable as quadrics in p3 so have a rational point by the 

definition of k. The third case has already been dealt with. 

By Theorem 3-7 the del Pezzo surfaces with n = 9 , 8  have already been dealt 
with and n = 7 is trivial. By Theorem 3. IO the case n = 6 reduces to that of a homo- 

geneous space over a 2-dimensional torus, which has been dealt with by Serre [2o]. 

The del Pezzo surfaces with n == 3 are the cubic surfaces in 1 ~: and for these the theorem 

follows from the definition of k. 
Finally, a del Pezzo surface with n ----- 4 is the complete intersection of two quadrics 

in the anticanonical embedding (9). Hence the theorem follows from a theorem of 
Lang [I i] (and a remark of Nagata freeing it from auxiliary restrictions on k). 

(x) I.e. there is a k-point on every k-hypersurfaee in P~ of  degree ~ n  for all n (el. Lang [xt]).  
(s) For  it is easy to deduce that  d lm H~ o ~  s) ~ x 3 from the representation of F |  as the blowing up 

of  five points of  the plane. 
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