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MINIMAL MODELS OF RATIONAL SURFACES

OVER ARBITRARY FIELDS
UDC 513.6

V. A. ISKOVSKIH

Abstract. In this article all the types of minimal models of smooth rational sur-

faces defined over an arbitrary field are described.

Bibliography: 19 titles.

Introduction and statement of the main results

Let F be a complete smooth algebraic surface over a field k. F is said to be a (rela-

tively) minimal model if any birational morphism F —• F' to a smooth surface F' is an iso-

morphism. As is customary, let

q (F) = dim Hl (F, OP), p{F) = dim H2(F, OF),

Pn(F) = dim H°(F, Qfn),

where Pn{F) is the «-genus for η > 1, and Ω F is the canonical invertible sheaf.

In this article we study minimal projective geometrically irreducible surfaces satisfying

the conditions

q(F)=.Pt(F) = 0. (.)

According to Castelnuovo's rationality criterion (see for example [1], and also §2 of the

present article), the conditions (*) characterize rational surfaces, i.e. those surfaces Fover k

such that over an algebraic closure k of k, F = F_ becomes birationally equivalent to the

projective plane P^. It is well known (see [1 ] , [7], [11] or [8]) that over an algebraically

closed field the minimal models of rational surfaces are listed as the projective plane Pj£ and

the series of scrolls F ^ with N> 0, Ν Φ Ι. For a nonclosed (but perfect) field k (see [11]),

it is known only that one can bring any rational surface to one of the three Enriques-Manin

standard types by birational transformations over k. In this article we show that in fact all

minimal rational surfaces over any field k are themselves contained in two of the three fam-

ilies of standard Enriques-Manin forms (see Remark 2 on p. 27).

In §1 we prove the following result.
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18 V. A. ISKOVSKIH

THEOREM 1. Any minimal surface F satisfying (*) is either isomorphic to P\, or to a

quadric Q C P^ having Pic Q~ Z, or belongs to one of the two following families of sur-

faces, defined by the conditions:

I. Pic F — Z, and it is generated by the anticanonical ample sheaf Ω ^ 1 .

II. Pic F — Ζ θ Ζ, a«<i i&ere ex/sis β morphism f: F —*• C having generic fiber F^ and

the base C smooth curves of genus 0. For every closed point t € C the fiber Ft is irreducible

over the residue field k(t), is geometrically reduced, and has Hl(Ft, &F ) = 0. Each non-

smooth geometrical fiber Ft is isomorphic to a pair of lines meeting in a point, Pi V Pi.

REMARK. A quadric Q C P^ having Pic Q — Ζ θ Ζ obviously belongs to the family

II.

This theorem is the natural generalization of the corresponding result for an algebraic-

ally closed field k (see [11] and [7]), and its proof involves the usual technical tools: inter-

section theory, the Riemann-Roch theorem, and the classical adjunction lemma (Lemma 2).

In §2 we give a new proof of Castelnuovo's rationality criterion in characteristic ρ > 0

(Theorem 2). In contrast to the constructive and extremely lengthy proof of Zariski [15],

[16] we use a technique of lifting to characteristic 0 to reduce the proof to the simple and

conceptually transparent argument of Kodaira [7] in the case of the complex field k = C.

A different proof, using /-adic cohomology and the Brauer group, was given by M. Artin (see

for example [8]).

In §3 we study the geometry of surface of families I and II. The surfaces of family I

belong to the so-called del Pezzo surfaces (smooth surfaces having ample Ω ^ 1 ) . The geome-

try of these has been well studied (see [10] and [11]). They have 1 < (Ω/Γ · Ω,Ρ) < 9, and

for η = (Ω^. · ζΐρ) > 3 they are surfaces of degree η in P"k. At the start of §3 we give

without proof a very short list of the basic properties of del Pezzo surfaces.

For surfaces in family II we prove the following theorem.

THEOREM 3. Let f: F —• C be a morphism as in Theorem 1, where C is a smooth

curve, not necessarily of genus 0. Then the following assertions hold:

(1) The sheaf f^p1 is locally free on C and of rank 3; the natural map φ: F —•

?c{f^pl) is an isomorphic embedding over C, mapping each fiber Ft into a conic of Pj^)·

(2) If f is a smooth morphism and p(C) = dim Hl(C, &c) = 0, then either F —

C χ C', where C' is a smooth curve of genus 0 not having any k-points, or F — PC(E),

where Ε is some vector bundle over C of rank 2. In either case F ~ FN with Ν > 0, where

¥N is the standard scroll, and (£lF · SlF) = 8. If Ν is odd, then C — ?l

k.

(3) If the morphism f is not smooth, then

P i c F = /*PicC 4-Ζ · QTF

l.

Let r = Σ\ deg t(, where {tv ..., ts} is the set of all points having degenerate fibers, and

suppose p(C) = 0; then rk Pic F = r + 2 and (SlF • D.F) = 8 - r. If p{C) = 0 and

(Ω,ρ · Ω,ρ.) is odd, then C^P^.

(4) The set of all surfaces in family II with a fixed smooth base curve C (not neces-

sarily of genus 0) and birationally equivalent over C is in natural bijection with the set of

all maximal orders over C in the quaternion algebra Av corresponding to the generic fiber

F over k{r\).
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We note that surfaces in family I are minimal, since Pic F — Z. It is also obvious that

surfaces in family II are C-minimal, since the fibers of the morphism F—> C are irreducible.

THEOREM 4. All the surfaces of family II are minimal, with the following exceptions:

(a) (Ω^ • nF) = 8 and F — Fl, where Fj is the standard scroll-the image of ΡΞ un-

der the blow-up of one point.

(b) (SlF • Ώ,ρ) = 3, 5, or 6.

THEOREM 5. Suppose that F belongs to family II.

(1) // (Ω^ · Q,F) = 3, 5 or 6, then F is a del Pezzo surface.

(2) // (Ω,ρ- • nF) = 8 and F Φ FN with N>2, i.e. if Ν = 0 or 1, then F is a del

Pezzo surface.

(3) // (Ω^. · Ω ^ = 1, 2 or 4, then F is a del Pezzo surface if and only if it has two

distinct representations in the standard form II.

There do not exist minimal smooth rational surfaces F with (Ω^ · Ω .̂) = 7.

In §4 we establish an analog of Theorem 1 for surfaces satisfying (*), on which a

finite group G acts; that is, with a given representation G —• AutkF. For these surfaces one

defines as usual the notion of G-map (and in particular G-morphism), G-minimal model, and

so on.

As Manin showed in [11], the birational classification of rational G-surfaces is com-

pletely analogous to the birational classiOcation of rational surfaces over fields that are not

algebraically closed, and can be carried out by a unified approach using the adjunction lemma.

In the case that k is algebraically closed, the birational classification of G-surfaces is equiva-

lent to the problem of describing up to conjugacy the finite subgroups G in the Cremona

group of P£. In [11] Manin describes the standard forms of G-surfaces up to birational G-

equivalence, but only for Abelian groups G.

The following theorem strengthens and generalizes this result to arbitrary finite groups

G.

Following [11], we let P(F) denote the group generated by the classes of G-invariant

divisors. Then it is easily seen that Ω^ GP(F).

THEOREM 1G. The assertions of Theorem 1 hold for any G-minimal surface F satis-

fying (*), provided that we replace ordinary morphisms by G-morphisms, Pic F by P{F), and

k-irreducibility by G-irreducibility.

We remark that all the results of §3 can be stated and proved in an analogous manner

for rational G-surfaces.

§ 1. The proof of Theorem 1

LEMMA 1. Let F be a complete smooth surface over a field k, let L G Pic F be an

invertible sheaf such that (L • L)> 0, dim H°(F, L) > 2 and the complete linear system of

curves \L\ {the zeros of sections of H°(F, L)) has no fixed components. Then H°(X, &x)

= k for any curve Χ ε \L\ .

PROOF. In the case that k is algebraically closed this is proved in [12]. The general
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case reduces to this by applying the simplest Kiinneth formulas (see [6], §6) to F ® k,

L ® k and X ® k, where k is the algebraic closure of k.

LEMMA 2 (the adjunction lemma). Let F be a smooth projective minimal surface over

k, satisfying (*); then for any invertible sheaf L e Pic F there exists an integer nL > 0 such

that H°(F, L ® n f ! " ) = 0 for all n>nL.

This is proved exactly as in the case of an algebraically closed field (see, for example,

[1], [7] or [8]).

LEMMA 3. Let F be a surface as in Lemma 2, and suppose that Pic F Φ Ζ · Ω .̂.

Then F has an invertible sheaf L satisfying the following conditions:

(1) dim H°(F, L) > 1 and dim H°(F, L ® Ω .̂) = 0.

(2) (L • SlF) < 0.

(3) For any section s G H°(F, L) the curve X of zeros of s is reduced and irreducible.

PROOF. First of all note that if there exists a sheaf L' satisfying (1) and (2), then

there also exists a sheaf L satisfying all three properties. For let s' GH°(F, L') be some

section, having divisor of zeros X' = Σ^Χ- with ri > 0, where the X\ are reduced and irre-

ducible components. Then any invertible sheaf 0F(X-) satisfies (1), since

dim H° (F, GP {X't) ® QF) «ξ dim H° (F, OF (Σ ηΧ'λ Θ QF\ = 0

and obviously dim H°(F, 0F(X-))> 1. It is then obvious that at least one of the sheaves

0F{X'i) satisfies (2), since (^ρ-(Σ(ηΧ.) • Ω.ρ) < 0.

If among the divisors of zeros of sections of L\ = 0F{X\) there remain reducible or

multiple curves, we can repeat the process of separating off components; this process obvi-

ously terminates, since at each step the degree of L with respect to some fixed ample sheaf

We will prove the existence of a sheaf L having properties (1) and (2) using Lemma 2.

Since Pic F ΦΖ • Ώ.ρ, we can find a very ample sheaf Η €Ξ Pic F with Η & Ζ · Ω ρ C Pic F.

By Lemma 2 there exists an integer nH such that the sheaf L = Η ® Ω .̂ Η satisfies (1). If

(Ζ, · Ω,,) < 0, everything is proved. If (L · Ώ.ρ) > 0, then (L • L) < 0 and (Ω^. · Ω ·̂) > 0.

Indeed, by the Riemann-Roch theorem,

o ( F L ® Q ) > ^ ^ 1

Here H2{F, L ® Ω,Ρ) = H°(F, L"1) = 0, since L Ψ 0F (otherwise Η e Ζ · Ω^,), and hence

(L • L) + (L • Ω,ρ) < - 2 , so that {L · L) < - 2 . Furthermore, we have

0 < ( / / • H) = (L • L)-2nH(L • QF) + η%(ΩΡ • QF),

and hence ( Ω κ · Ω κ ) > 0.

We will try to find the desired sheaf in the form Ln = L"1 ® Ω,ρ". For η suffi-

ciently large we have H2(F, L~l <8> Ω^") = 0; for by Serre duality this is equivalent to

H°(F, L ® Ω £ + 1 ) = 0 for large n, which is true by Lemma 2. Hence for large η the Rie-

mann-Roch theorem provides us with the inequality
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dim H°{F,L 1®QF ) > 1- 1·

Since (Ω^- • Ω^) > 0, the right-hand side is positive for large n. Thus we can find some min-

imal value « 0 > 0 such that

and

since H°(F, L"1) = 0. Thus (1) holds for LnQ; (2) also holds:

(ΖΓ1 ® Q'F"' -QF) = —(L- QF) — n0 {QF • QF) < 0.

This proves Lemma 3.

LEMMA 4. Under the hypotheses of Theorem 1 suppose that on F there is an inverti-

ble sheaf L satisfying properties (1)—(3) of Lemma 3. Then the following assertions hold:

(a) (L • L) > 0 and dim Hl(F, L) = 0.

(b) There exists an invertible sheaf L' satisfying (1)—(3) of Lemma 3, and for which

(L' -L')<2.

PROOF, (a) Suppose the contrary; that is, (L • L) < 0. Then dim H°(F, L) = 1,

since according to (3) the linear system \L \ cannot have fixed components. Let X be the

(unique) reduced irreducible curve such that L = 0F(X). Consider the short exact sequence

of sheaves

and the corresponding long exact cohomology sequence

. . . -+H1(F,OF)-+Hl(X,Ox)-+H*(F,OP(-.X))-+ . . . . (1.1)

Here Hl(F, 0F) = 0 by hypothesis, H2(F, 0F{~X)) = H°(F, L ® Ω^) = 0 by (1), and

hence Η (Χ, 0χ) = 0. On the other hand, we use the formula for the genus of a curve on

a surface:

ftW^'7'»>MJ (1.2)

Substituting dim H1(X, 0X~) = 0, and setting Ω,Ρ = 0F(K), with Κ the canonical divisor on

F, we rewrite (1.2) in the form

(X -X) 4 (X · K) = — 2dimff°(X, Ox), (1.3)

where for any divisors Dx and D2 the symbol (Dt · D2) denotes the intersection number,

equal to {(^pip^) · 0F(D2)). Interpreting the intersection number as an Euler-Poincare

characteristic (as in [9]), and using the Kiinneth formula, we observe that (Dt · D2) =

(Z)j · D2) on the surface F over k. Hence it follows from (1.3) that

(Χ.Χ) + {Χ·Κ) = — 2dimj H° (Χ, Οχ).

Let X = q Σ™ Xj be the decomposition into irreducible components, where q is the multi-

plicity (if k is not a perfect field, then in general q Φ 1).
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The Galois group G&l(kjk) of the separable closure acts transitively on the set of com-

ponents {Xj} and preserves the intersection numbers, so that (ΛΓ,. · X) = (Xj · X) and

(X( · K) = (Xj • K) for any i and /. We have

qm (Xt -X) + qm (X, • K) = - 2dim^ H° (X, Ox).

From the condition (L • Q.F) < 0 we get (Xj K)<0, and from the hypothesis (L • L) =

(X • X) < 0 it follows that (Xf • X) < 0. Furthermore, (Xj · X) = (Xt • qZX,) < -q.

Since X is reduced and irreducible, H°(X, 0X) is a field, which is a finite extension of

k; the degree of the separable part of this extension is equal to the number of geometrical

connected components of the curve X; and the degree of the inseparable part is not greater

than the geometrical multiplicity q. Hence dim H°(X, 0X) < mq, and we get the inequality

qm (Xi -X) + qm (Xt • K) > — 2qm,

which, because of the above-stated restrictions, has the unique solution (Xt · X) = (X{ · K)

= - 1 and q = 1. Thus each irreducible component Xt is a connected component. Hence

(Xt · Xj) = 0 for / Φ j , (Xj • Xj) = -1 and (Xt -K) = -l. But in view of the Castelnuovo

contractibility criterion (see for example [18]), these conditions imply that X is an excep-

tional curve of the first kind on F. Since F is minimal, we have obtained a contradiction,

which means that the supposition (L · L) < 0 is false.

We now prove that H1(F, L) = 0. Let X be any curve such that L ^ 0F(X). We

write the short exact sequence of sheaves

0 -> OP (— X) <g> ΩΡ - * QF -v Ox <gl Ω/τ -• 0.

From the corresponding cohomology sequence we get

H1 (F, Op(— X)<g> Qp) = Ηϋ(Χ,Οχ®Ωρ) = 0,

since by hypothesis deg f c (^- <8> fiF) = (L · Ω) < 0 on X. Thus by Serre duality we get

dim H1 (F, OF (-- X) ® Ω) = dim H1 (F, Ο (X)) = 0.

This proves (a).

(b) Note that if (L • L) > 0 then

dim H°(F,L) = (L-L)+2. (1.4)

For, in the Riemann-Roch formula, Hl(F, L) = 0 as just proved; and

since dim H°(F, SlF) = 0 and L~l — <^.(-X) is a sheaf of ideals. Hence

) + l > 2 ,

so that Z, satisfies the conditions of Lemma 1.

Let X be any curve in the linear system \L\. Then by Lemma 1 H°(X, 0X) = k. On

the other hand, as in the exact sequence (1.1), Hl(X, 0X) = 0. Thus from the genus form-

ula (1.2) we get

(L-QF) = -(L-L) — 2 (1.5)

and (1.4) follows from the Riemann-Roch formula.
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Now suppose that (L • L)> 3. Consider the invertible sheaf ilF ® L2. Let us check

that it satisfies (1) and (2) of Lemma 3. Since

dim H2 (F, QF ® L2) = dim H° (F, l~2) == 0,

we can use (1.5) to obtain

QF

Furthermore, since

(£, · Ω£ ® L2) = 2 (L · £.) + 2 (Z. · Qf) = - 4

and the linear system \L\ is mobile according to (1.4), and has no fixed components by (3),

we have

H°(F,(QF®L2)®QF)--=0.

Thus we have verified (1).

Before starting to check (2), we must recall Noether's formula:

(QF • QF) + c 2 (F)

12
= dim H° (F, OF) — dim Hl (F, OF) + dim H2 (F, OF),

where c2(F) is the second Chern class of the tangent bundle to F. It is known (see [3]) that

c2(F) can be expressed in terms of the /-adic Betti numbers bi (where / Φ char k):

1 = 0

this is the topological Euler-Poincare characteristic. For surfaces F satisfying (*) we have

^o = ^4 = ^ a n ( ^ ^i = ^3 = 0> a r ) d (1-6) takes the form

(ΩΡ-ΩΡ) = \0~ bz.

Since b2 > 1 for a projective surface, we have (SlF · Q.F) < 9, as required.

Since (L · L) > 3 and (i2F · fiF) < 9, we have

( O F 0 L 2 Q F ) = ( Q F - Qf)-f-2(L • QF) = (iiF- QF) — 2(L- L ) - 4 < 0 .

Hence (2) also holds for the sheaf Ω -̂ ® L2. Furthermore,

H'(F, QP<g>L2)=0.

Indeed, the linear system \L2\ has no fixed components, since \L\ has none. By Lemma 1 it

follows that H°(Y, 0Y) = k for any curve Υ for which L2 = 0F(Y). From the cohomology

exact sequence associated to the short exact sequence of sheaves

0 -v OF (— Y) -H> OF -v 0 y -v 0,

we get immediately //'(/% /-~2) = //'(/% ^ , ( - Y)) = 0, and from duality H\F, ΩΡ ® Ζ,2)

= 0.

Thus, using (1.5), the Riemann-Roch theorem gives us

dim HO{F,
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Starting from the sheaf £lF ® L2, we can now use the construction in the first part of the

proof of Lemma 3 to find some invertible sheaf L j satisfying all of the three conditions in

Lemma 3. By construction

where H°(F, L2) > 1. Using (1.4), we have

(L- L) — \ =

and hence (Lr · Lx) < (L • L) - 3. If (Ll · Lx) < 2 then L1 is the required sheaf L'; if

(Lj • Z,j) > 3 then the same process may be repeated; this process obviously terminates.

This proves (b), and with it Lemma 4.

LEMMA 5. Under the conditions of Lemma 4, if {Li • Lx) = 1 then F — p£; if

(L • L) = 2 and there is no invertible sheaf L' on F with (L' • L') = 0 and satisfying (1 )-(3)

of Lemma 3, then F =* β, w/zere g C P ^ κ a smooth quadric with Pic Q — Z.

PROOF. If (X • L) = 1, then, according to (1.4), dim H°(F, L) = 3. Z, is generated

by its sections. For let X G \L\ be any curve; then we have the exact sequence

0 -> H° (F, OF) -> H° (F, OF (X)) -> H° (F, Ox ® OF (X)) -v 0,

so that the trace of L on X has dimension 2, whereas if |L| had a base point it could only

be 1.

Thus L defines a morphism <$L: F —• P2. of degree 1. Since F is minimal, yL must be

an isomorphism.

If (L • L) = 2, then, just as in the case (L · L) = 1, there is a morphism φΙ^: F —>• /·"'

C P^. The image ^ ( F ) = F ' does not lie in any plane of P^, and cannot be a curve be-

cause (L • L)> 0. Hence F' = Q is a quadric of P^, and φι is a birational morphism. If Q

is regular, then, because F is minimal, φι is an isomorphism and Q is smooth. There are two

possible cases:

a) Pic Q — Z, with the plane section as a generator; here Ω .̂ — 0F(-2).

b) Pic Q — Ζ Φ Ζ, with generators the lines cut out by some tangent plane; here there

is an L' with (£ ' · L') = 0 provided by &F{1), where / is either of these lines, and by the

hypotheses of the lemma this case is excluded.

If Q is a quadratic cone and F" —>· Q is the resolution of its singular point, then φ'^:

F —> F" is an isomorphism by the minimality of F. Let Ζ C F" be the exceptional curve;

one checks easily that (Z · Z) = -2. We can also exclude this case, since V — L ®

0ρ(τφ'£~ι(Ζ)) provides a sheaf with (L' • L') = 0.

Thus there remains the unique possibility Pic F — Z, F — Q, Ώ.Ρ — 0Ρ{~Ί). This

proves the lemma.

PROOF OF THEOREM 1. If Pic F — Ζ · Ω,ρ1, then F belongs to family I. In any other

case, according to Lemmas 3 and 4, on F there is an invertible sheaf L with properties (1)—

(3) of Lemma 3, and with (Z, · L) = 0, 1 or 2. If (L • L) = 1, then F - P^ by Lemma 5.

If the minimal selfintersection number (L • L) (taken over all L) is 2, then according to

Lemma 5 F is a quadric in P^ with Pic F — Z. It remains to deal with the case (L · L) — 0.

Let us show that in this case F belongs to family II. From the Riemann-Roch theorem, us-

ing the second assertion in (a) of Lemma 4, we get



MINIMAL MODELS OF RATIONAL SURFACES 25

dim H°(F, L) = — F + 1 > 2,

since (L · £lF) < 0. The linear system \L\ is without fixed components (by (3) of Lemma 3),

and (L • L) = 0; hence L defines a morphism of F onto some curve. From the results of

[17] it follows that the graded ring R = @m>0H°(F, Lm) is finitely generated, and there

exists a surjective morphism

f :F-

where C is a complete nonsingular curve. In view of the Kiinneth formulas,/commutes with

extensions of the base field, and we obtain

/ : F — C = Proj (/? ® k).

As shown in [17], C is a normal irreducible curve, and hence C is smooth over k; the func-

tion field k(C) is algebraically closed in k(F), and hence each fiber F_ is connected, and the

generic fiber F^ is geometrically irreducible. It follows that f*0- = &- a n d / * ^ · = &c·

The remaining properties of/are contained in the following lemma.

LEMMA 6. For any point t £ C, Hl{Ft, &F ) = 0, the fiber Ft is irreducible over

k(t) and geometrically reduced. Every degenerate fiber F_ (for i 6 C ) is of the form F_ =

Xy + X2, where Xt and X2 are irreducible smooth curves of genus 0 satisfying {Xi · Xt) =

- 1 andQCy · X2) = 1.

PROOF. The morphism /: F —> C is flat ([9], Lecture 6), and Rqf*0F = 0toiq>2

from considerations of dimension. Hence (see [9], Lecture 7) the sheaf Λ 1 / * ^ - 1S locally

free over C, and

But for some closed point t G C we have Ft = X G \L\. From the exact sequence (1.1) we

get H1(X, 0X) = 0, which proves the first assertion of the lemma.

Let Ft= Y1 + · · · + Yr, with r > 2, and with the Y( being irreducible curves on F.

Since F f G \Lm\ for some w > 1,

Without loss of generality we can assume that {&F(YΊ) · £lF) < 0. Clearly (Yx · Ft) = 0,

and since F{ is connected, (Fj · ^ - Y^) > 0. Hence (Y1 • Yt) < 0. Since

we have

Thus on F there is an invertible sheaf 0F{Yχ) satisfying conditions (1) and (2) of Lemma 3,

and with {0F(Yγ) · 0F(Y{j) < 0. From the first step in the proof of Lemma 3 it is clear

that in this case F has a sheaf 0F(Y) satisfying all three conditions of Lemma 3, and with

(0F(Y) • @F(Y)) < 0. But this contradicts Lemma 4. This proves the irreducibility of the

fibers.
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Now let F_ be some closed geometric fiber, with i 6 C . Since Rxf*0F = 0, we have

H°(F7, O-F_) = J,Oj ®k(t) = G-c®k(7) = k.

Since (Ft • F f ) = 0 and Hl(F 0p ) = 0, the genus formula (1.3) gives (F_ · A? ) = - 2 .
_ _ _ 7

If F_ = qX0, where Xo is a reduced curve and <y is a multiplicity (since the fiber Ft is irre-

ducible its geometric irreducible components have the same multiplicity), we have similarly

(Xo · K-) = -2. But (F_ · AT_) = <7(X0 · AT_); hence <? = 1 and F_ is reduced. Since every

geometric fiber is reduced it follows that the generic fiber Fn is also geometrically reduced.

For the last assertion we note that in view of the irreducibility of Ft, the intersection

number (Xt • Κ _), for any irreducible component Xi of the curve Ft ® k, is independent of

i. Hence from (F_ · AT_) = — 2 it follows that F_ can consist of at most 2 components. Let

F- = Xl + X2\ then (X( · Κ J) = -1, and there are no possibilities other than (Xt · Xt) =

- 1 , (Xj • X2) = 1 and ρ^Υ,·) = 0. The lemma is proved.

COROLLARY. For every degenerate fiber F f the residue field k(t) is separable over k.

For let q be the degree of inseparability of k(t)/k. Ft decomposes into 2 components

over some separable extension of k, and we can therefore assume that k is separably closed.

Then Ft = q(Xy + X2)- From the genus formula we have

( F 7 · F7) + (Ft -K-F) = -2dimH°(Ft, OPt) = - 2 [k(t] :k\ = —2q

and similarly

(Xi-Xi)+q{Xi-KF)=-2q.

Since (X( · Xt) = -1, it follows that q = 1.

Let us conclude the proof of Theorem 1. From the Leray spectral sequence for the

morphism / and the sheaves 0F and Gm F (where Gm F is the sheaf of invertible sections of

0p) in the Zariski topology,

Y = H" (C, R"f,OF) ·* H"'" (F, OF),

ΕΪ" = H" (C, Rqffim.F) ** H"'q (F, Gm,F),

we obtain exact sequences for the initial terms:

0 _ v H1 ( C , f , G n . F ) -, Hl (F, Gm.P) - v H° (C, R*ftGm,F) - * . . . .

Since f*0F = &c, we have that f*Gm F = Gm c . Hence from the first exact sequence we

get Hl(C, 0C) = 0, and from the second (since Hl(X, Gm F) ~ Pic X for any scheme X)

we get the exact sequence

0 -v Pic C £• Pic F -v Pic F/C-+ ...,

where Pic F/C is the group of global sections of the sheaf of relative Picard groups: this group

is generated by irreducible components of fibers and the Picard group of the generic fiber F^

of/ In our case, by Lemma 6, all the fibers are irreducible, so that there are no nontrivial

components of fibers. Furthermore, as was established at the beginning of the proof, Fn is a
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geometrically irreducible curve, and by Lemma 6 F^ is a smooth curve of genus 0. Hence

Pic F — Z, and we also have Pic C — Z. L G Pic F is effective, but not ample (since (L · L)

= 0), so that Pic F & Z. Hence from (1.7) we get Pic F =* Ζ θ Ζ. The theorem is proved.

COROLLARY (ENRIQUES-MANIN). £Very smooth complete rational surface F' over k is

birationally equivalent over k to one of the surfaces F in Theorem 1.

In fact, Theorem 1 even implies that there is a birational &-morphism F' —• F.

REMARKS. 1. If k is a perfect field, then it is known that every complete regular sur-

face is smooth. Thus by the theorem on the resolution of singularities every reduced irre-

ducible surface over k (in particular, a rational surface) can be birationally transformed into

a complete smooth surface. It would be interesting to describe the complete and regular

(but not smooth) minimal rational surfaces.

2. In addition to the surfaces (the standard forms) described in Theorem 1, there is

another family of standard forms given in [11]—the degenerate del Pezzo surfaces, as de-

fined in [11]. This class includes the complete smooth surfaces Fover k obtained by re-

solving the singularities of normal rational surfaces F* (having only ordinary double points),

satisfying Pic F* — Ζ · Ω^ί. It follows from our Theorem 1 that surfaces of this family

either are nonminimal, or belong to family II. For example, if F* C P^ is a cubic surface

with 3 conjugate geometric double points, and F —> F* is a resolution, then F contains a

geometrically reducible exceptional curve of the first kind Z: the proper transform of the

plane section of F* passing through the 3 singular points. On contracting Ζ we obtain a

del Pezzo surface of degree 6.

§2. The Castelnuovo rationality criterion

The following proposition is a partial converse of Theorem 1.

PROPOSITION 1 (a). Every complete smooth surface F over k having ample sheaf Ώ.ρ1

satisfies (*).

(b) (NOETHER'S LEMMA). Let F be a smooth complete surface over k and let g:

F —> C be a rational map onto a curve C of genus 0, whose generic fiber is a geometrically

irreducible, geometrically reduced rational curve. Then F is a rational surface {and hence

satisfies (*)).

PROOF, a) Since Ωρ1 is ample, it follows at once that

and, in particular, ρ = Ρ2 = 0 .

Since the conditions (*) are invariant under extension of the constant field, we can

assume that k is algebraically closed. By Noether's formula (1.6), (Ω^. · Ω .̂) + c2(F) =

12(1 - ι?). Since p(F) = 0, the Picard scheme Pic°F is reduced (see [9], Lecture 27), and

This follows at once from the exact sequence

0 -• H1 (F, μ/Β) - Pic F -5- Pic F
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corresponding to the Kummer short exact sequence

ln

0 " v Η·/Π ->· Gm.F -*· Gm,F ->· 0.

Substituting in the Noether formula, we get

(QF · QP)= 8 ( 1 —q) + 2 — bt{F, I).

Since b2(F, I) > 1, if q > 1 we would get (Ω^ · i2F) < 0, contradicting the ampleness of

Ω ^ 1 . If q = 1 then i 2 ( F , /) = 1, but in this case the Albanese map F —• A is a morphism

onto an elliptic curve (dim .4 = q = 1), and the fiber FQ satisfies (Fa • Fa) = 0, contradicting

the inequalities

1 < rk Pic /7Pic° F < b2 (F, 1) = 1

and the ampleness of Ω^ 1 .

b) Let G be the complete curve of genus 0 over k(C) which is birationally equivalent

to F . Then G is a smooth curve, and its anticanonical map embeds it isomorphically as a

nondegenerate conic Q C P^/^)· If k is the algebraic closure of k, then by Tsen's theorem

the conic Q ® k(C) has a £(C)-point, and is hence isomorphic to Pi . This means that

F <S) k is birationally equivalent over k to the surface Pi χ C ® k. Since by hypothesis

C ® k — Pi, F is a rational surface, and because conditions (*) are birationally invariant,

they hold for F. This completes the proof.

In the case of an algebraically closed field k the conditions (*) for F make up the

famous Castelnuovo rationality criterion. The most transparent proof of this criterion in

characteristic 0 was given by Kodaira [7]. In characteristic ρ > 0 this was proved by Zariski

[15], [16]. Artin has extended Kodaira's proof to characteristic ρ > 0, replacing the classi-

cal cohomology by /-adic cohomology (see for example [8]).

Our proof is a reduction to Kodaira's proof by means of a lifting of F to characteris-

tic 0.

THEOREM 2 (the Castelnuovo rationality criterion). A smooth projective surface F

over an algebraically closed field k is rational if and only if q{F) = P2(F) = 0.

PROOF. We only have to prove that (*) implies rationality. We can assume that

F is minimal. Since k is algebraically closed, according to Noether's lemma (see (b) of

Proposition 1) any surface of family II is rational; a quadric of P^ is also rational. Hence it

remains to consider the case that F belongs to family I.

The following lemma completes the proof of Theorem 2.

LEMMA 7. Over an algebraically closed field k there do not exist any smooth surfaces

F in family I.

PROOF. If char k = 0 this was proved by Kodaira [7]; his argument is very simple.

We can assume that k = C; then the exponential exact sequence gives an isomorphism

H*{F, Z ) ~ P i c / \

But by hypothesis Pic F — Ζ · Ω ^ 1 . Then by Poincare duality we should have (Ω^. · Ω Ρ )

= ± 1, whereas Noether's formula gives (Ω^. • Ω^) = 9; this is a contradiction.
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Now suppose that char k = ρ > 0. Since dim H°{F, SlF

l) > (D,F · Ω.Ρ) + 1, there is

a curve Χ ε ΙΩ^ 1 ! · From the condition Pic F — Ζ • Ω^ 1 it follows that X is reduced and

irreducible, and from the genus formula (1.2) we have p(X) = 1.

Let us show that F satisfies the sufficient condition for lifting to characteristic 0; that

is, H2(F, TF) = 0, where TF is the sheaf of germs of sections of the tangent bundle.

We consider the sheaf exact sequence

0 -y OF {(n — 1) X) ®TF-+OF(nX) ® 7> -> Οχ ® OF (nX) ® 7> -»• 0, n>0,

and the corresponding cohomology sequence

. . . -* Η1 (Χ, Οχ ® OF (nX) g) TF) > H2 (F, OF ((n - 1) X) <g) 7 »
! ( F 0 . (2.1)

By Serre's theorem # 2 ( F , 0F(nX) €> 7F) = 0 for sufficiently large n, since

is ample. Hence for H2(F, TF) to vanish it is sufficient that

Hl(X,Ox®OF(nX)<g)TF) = 0 for all n>\.

We consider two cases separately:

a) the linear system | Ω ·̂11 contains a smooth curve X;

b) all curves of | Ω ^ Χ | are singular.

In case a) suppose that X is a smooth curve; then Τχ — 0χ, since p(X) = 1, and we

have the sheaf exact sequence on X:

where Ν = &x <8> &F(X) is the normal sheaf to X in F. Taking the tensor product with

0F(nX) and passing to the cohomology sequence, we get

.. . -> H1 (X,OX® OP (nX)) — H1 (X, OF (nX) ® TF/X)

->H1(X,OF(nX)^iN)^0. (2.2)

Here

Η1 (Χ, Οχ ® OP (nX)) = Hl (X, OF {nX) ®N)=0

for η > 1 by the Riemann-Roch theorem on X, and hence

H1(X,OF(nX)®TF/x) = 0;

thus H2(F, TF) = 0.

Case b) cannot occur. Indeed, according to [14], it is only possible for all curves of

ΙΩ^ 1 ! to be singular if char k = 2 or 3, and every curve X must have only a single cusp

singularity (that is, a point like t\ - t\ = 0). Let us choose some linear pencil Μ C |Ω^ |.

Then the geometrical locus of singular points of the elements of Μ is a certain curve Y. As

remarked in [19], Υ cannot be singular. The pencil Μ defines a purely inseparable cover

Υ —*• Ρ 1 . It follows that Υ is a rational curve, and, since it is nonsingular, that pa(Y) = 0.

On the other hand, since Pic F — Ζ · 0F{X), there exists some integer m such that Υ ~ mX,

and then pa(Y) = m(m - l)/2 + 1 > 0; this is a contradiction.

Thus, by Grothendieck's theory (see SGA3 and [6], Chapter III), F can be lifted to
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characteristic 0, and, furthermore, the lifting can be algebraized, since F is projective. More

precisely, there is a complete discrete valuation ring W with residue class field k and field of

fractions K, with char Κ = 0, and there exists a flat proper morphism h: F —>• Spec W hav-

ing the closed fiber F ® k — F. Since the closed fiber is smooth, so is the generic fiber Fw,

where w S Spec W is the generic point. Hence h is a smooth morphism. We have Η^&~ = W

and {Ch^C?-. = 0 for i > 2, since the fibers are 2-dimensional. Hence (see [9], Lecture 7)

R2h*0~ is locally free, and since it is zero on the closed fiber, it is everywhere zero. Now,

similarly, we have R1hjl.&~ = 0. Thus for any fiber, and in particular for a geometric ge-

neric fiber,

The group Pic F, with its positive generator Ω^ 1 , lifts to F, and because of the semicon-

tinuity of the rank (see [13], Expose X, (7.16.2)),

(the rank for the geometric generic fiber cannot be greater than that of the closed fiber; but

r k P i c F = 1).

Now Fw ® Κ is a surface over the algebraically closed field Κ of characteristic 0, and

it satisfies all the properties of the surfaces of family I, which, as we have shown, is empty.

Hence there also do not exist surfaces of family I over an algebraically closed field of char-

acteristic ρ > 0. This proves the lemma, and with it Theorem 2.

§3. The geometry of the standard forms

DEFINITION. A smooth complete surface F over a field k is a del Pezzo surface if

Ω^ 1 is an ample sheaf.

All the surfaces of family I of Theorem 1 are del Pezzo surfaces; some of the surfaces

F of family II can also be del Pezzo surfaces.

We note the main properties of del Pezzo surfaces (see [10] and [11]).

(a) 1 < (Ω^. · nF)<9; this follows from (1.6).

(b) If η = (ilp • Ώ,ρ) > 3 then Ω^Γ1 is very ample, and defines an isomorphic

embedding of F in P£ as a surface of degree n; conversely every smooth (normal) surface F

of degree 3 < η < 9 in P£ and not lying in any hyperplane is a del Pezzo surface. If η — 2,

then Ω^ 1 defines a double cover F —>• P^ with ramification a curve of degree 4. If η = 1,

then Ω^ 2 defines a double cover F —• Q C P^, with Q a quadratic cone, and the ramifica-

tion curve is cut out on Q by some cubic not passing through the vertex.

(c) Every geometrically irreducible curve X on F having negative selfintersection num-

ber is an exceptional curve of the first kind. The number of such curves on F ® k is finite,

and this number and the configuration of the curves has been determined (see [10], Chap-

ter V, Theorem 4.3). If F does not contain exceptional curves, then either η = 9 and

F ^ Pi, or η = 8 and F ^ Pi χ Pi.
k k k

(d) Over an algebraically closed field k a del Pezzo surface F with η = 9 is isomorphic

to P2.; if η = 8 then either F — P^ χ P^ or F — Fj is the image of P^ under the blow-up

with center in 1 point. If 1 < η < 7 then F is a del Pezzo surface if and only if it is iso-

morphic to the image of P2, under the blow-up of 9 - η closed points, of which no 3 lie on
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a line, no 6 on a conic, and for η = 1 all eight do not lie on a cubic which is singular at one

of them.

(e) L e t F —• F' be a birational morphism of smooth projective surfaces. If F is a

del Pezzo surface, so is F'. If F' is a del Pezzo surface, (i2F · Ω.ρ) > 1, and all curves on F

with negative intersection number are exceptional, then F is also a del Pezzo surface.

REMARK. In Manin's book [10] (Chapter IV, §§2.5, 2.8 and 4.3) the question of the

sufficiency of the conditions of "general position" given in (d) is left open. The following

simple argument answers this question.

Let g: F —• P£ be the blow-up with center in the r = 9 - η distinct points xv ..., xr

of P2, (k is algebraically closed), g maps curves of the linear system ΙΩ^ 1 ! into cubic curves

through Jtj, . . . , xr (since f*£lF = Ω 2 ) · Since η < 8, we have (Ω^· • Ω .̂) > 1 and
pk

dim H° (F, ΩΫ) = (QP • QF) + 1 > 2.

By the numerical criterion for ampleness, Ω ^ 1 will be ample provided that

(α) |Ω^Μ has no fixed components, and

(β) F contains no reduced irreducible curves Ζ with {&F{Z) · £lF) = 0; if | Ω ^ * | is

without fixed components then the morphism corresponding to £lF

m contracts these curves

into singular points.

In case (a), let Υ be a fixed component; then g(Y) is a component of all the cubics

passing through xx, ..., xr, and hence g(Y) is either a line, or a conic. If g(Y) is a line

passing through only 2 points xt then the space of residual conies, passing through at least

r - 2 points, has dimension strictly less that (Ω^. · Ω^), the dimension of the linear system

ΙΩρ 1 ! . Hence g(Y) passes through s > 3 points. The case that g(Y) is a conic is similar.

In case (|3) we automatically get (Ζ · Ζ ) = - 2 from the negative definiteness of the

intersection form on contracted curves and from the formula for the genus. Let g(Z) C P^

be a curve of degree m passing through x( with multiplicity vr Then

(Z-Z) = m2 — ^ v? = - 2 ,

1 = 1

or

2 ν? = m2 + 2,
£ = 1

v, = 3m.
t = i

The quadratic form Σ^ vf takes on the minimum value 9m2 jr at vx = · · · = νr = v, with

ν - 3m/r; hence 9w2/r <m2 + 2, or (9 - r)m2 < 2r. It is clear from this that only the

following possibilities can occur: 3 < r < 6 and m = 1; 6 < r < 8 and m = 1 or 2; r = 8

and w < 3 (m φ 4 since i> = 12/8 is not an integer, and the minimum is not attained). In

the first two cases the curve g(Z) can only be a line or a conic. From (Ζ · Ζ) = - 2 it fol-

lows that a line has to pass through 3 points x(-, and a conic through 6 points. In the case
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r = 8, m = 3 one of the points must have multiplicity 2, and the others 1. Thus we have

proved that Ω^ 1 is ample if and only if the conditions stated in the second sentence of (d)

hold.

In the rest of this section we will mainly consider surfaces of family II.

PROOF OF THEOREM 3. (1) Since p{Ft) = 0, simple computations show that

Hl(Ft, Ω^®0^) = Ο

for every fiber Ft, t G C. Hence i ? 1 / * ^ ^ 1 = 0, and the sheaf f+Ωρ1 is locally free of rank

dim H°(Ft, Ω ^ 1 ® 0F ) = 3 (see [9], Lecture 7). Further, from the structure of the geo-

metric fibers F_ it is clear that the restriction of Ω^ 1 to every component of F_ is a very

ample sheaf. Hence we get the required isomorphic embedding over C

Since

degr (Ω"/ ® 0J? ) = (Ωΐ1 · 0 ΐ (f-)) = 2,
ft /· / · , f A (

YJ(F_) is a conic in the corresponding plane

f F F-t k·

If F_ is reducible, then ¥>(F_) is a pair of lines of Pi.

(2) Suppose that p(C) = 0 and that / is smooth. First of all we assume that there

exists a section s: C —• F, and set s(C) = S. Then, as in (1), R%0F(S) = 0 for / > 1,

and /•^•(5) is a locally free sheaf of rank dim H°(Ft, 0F(S) ® 0F) = 2. Let Ε be the

corresponding rank 2 vector bundle; then it is not difficult to check that the map ψ: F —•

PC(E) is an isomorphism over C. From the classification of vector bundles over the line it

is known that Ρ Jfi ® k) — FN, where

FN = Projp l (Opl_ 0 0 P i (N)), N>0,
k k k

is the standard scroll.

Now suppose that /: F —>• C does not have a section over k. Then by the Noether-

Tsen lemma /: F —*• C has a section, and by the above argument, there is an isomorphism

F — FN for some Ν > 0.

Let Ν > 1, and let S C FN be the image of the canonical section: (S · S) = -N and

(S • KF ) = 2N - 2. Since the curve 5 with negative intersection is unique on FN, there

must exist a curve J o n F which is geometrically irreducible and reduced over k, such that

X ® k = qS. From the irreducibility and geometrical connectedness of X, H°(X, 0X) must

be a purely radicial field extension of k, with q > dim H°(X, &χ). From the genus formula

(1.3) we get at once that q = 1; that is, in this case F —>· C must have a section. Hence

there remains the case Ν = 0, F — C χ C, where C' does not have ^-points.

It is known that ( Ω ρ · Ω κ ) = 8, and hence (£lF • Ω .̂) = 8.

(3) If /is not smooth, it cannot have a section. For if 5 = s(C), then (5 · F_) = 1.

Suppose that F_ = A\ + X2 is a degenerate fiber; then, since (S • X^ = (S • X2), (S • F_)

> 1, a contradiction. Hence the generic fiber Fv does not have points of degree 1 over k(ri),
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and Pic F is generated by Ω ^ 1 ® 0Ψ , a sheaf of degree 2. In the exact sequence (1.7)

Pic F/C — Pic Fv — Z, and hence

Each component of a geometric degenerate fiber is an exceptional curve of the first

kind on F by Lemma 6. Contracting one of these components for each such fiber (there

are r of them), we get one of the scrolls FN (see (2) of Theorem 3). It follows at once that

rk Pic F = 2 + r (since rk Pic F ^ = 2), and (Ω_ · Ω _) = 8 - r; if (QF • ilF) is odd then

r = Σ deg tt is odd; that is, C would have a divisor of degree h.c.f.(r, 2p(C) - 2) = 1. By

the Riemann-Roch theorem C would then have a Ar-point, and C — Pj[.

(4) First of all we remark that F —*• C and F' —*• C are birationally equivalent over C

if and only if their generic fibers F and F' are isomorphic over k(y\). Hence by the classi-

cal theory the corresponding quaternion algebras A^ and A'n over fc(i?) are isomorphic.

We consider first the case that /: F —> C is smooth. Then according to Grothendieck's

definition [5], F —* C is a Severi-Brauer scheme over C of relative dimension 1, and to it

there corresponds an Azumaya algebra of rank 4 over C, having stalk A^ at the generic point.

The correspondence between Azumaya algebras and Severi-Brauer schemes is bijective [5], so

that we only need verify that the Azumaya algebras which extend An are exactly the maxi-

mal orders of Av over C. The general case of this is proved in [4].

A generalization of the previous correspondence to nonsmooth morphisms of relative

dimension 1 with a 2-dimensional base C is given in [2]. When C is 1-dimensional the argu-

ments given in [2] can be simplified a little, and we reproduce them very briefly here. Let

A be any maximal order in Αη over C. Then (as in the smooth case) one can associate to A

the C-scheme of its left ideals X —* C (the closed subscheme of the Grassmannian over C

representing the functor X(C) = {left ideals I in A ®e &c> of rank 2}). Αη has only a

finite number of ramification points t v ..., ts e C, and outside these A extends to an

Azumaya algebra. Clearly the ί(· are contained in the set of degeneracy of the morphism

/: F —• C. We want to elucidate the structure of the scheme X —> C locally in a neighbor-

hood of any point t G C. If f is not a ramification point, then, because A is a maximal or-

der, A ® 0t is locally an Azumaya algebra, and hence the corresponding fiber Xt is smooth

and of genus 0 (as the fiber of the Severi-Brauer scheme X ® 0t —>· Spec &t).

Now suppose that t e {tv ..., ts}. Then, as is well known, a maximal order in A^

over the discrete valuation ring 0t can be given by means of a basis (1, i, j , />') with the mul-

tiplication table

P = q, j2 = fit, ij = —ji, if char β =f= 2,

(3.1)
2

if ,

where t is a local parameter at the point t, a and j3 G 0t are invertible, and

χ2—αφϋ(ηιοάί), if char Ηφ«λ,
(3.2)

r ! + ;c+ 1a^0(mod0. i f char £ = 2,

for any χ G 0t. Conversely for any α, β G 0t satisfying (3.2), the relations (3.1) define a
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maximal 0t-order in some nontrivial quaternion algebra. The elements a and β are invertible

in some neighborhood of t, so that our maximal order A is given by the relations (3.1) in

some neighborhood U 3 t. From (3.1) one easily establishes the equations defining the

scheme of left ideals Χυ —* U as a closed subscheme of ?2

σ:

xl — a.x\ — β^1 = 0, if char Λ =̂= 2,
(3.3)

xl + xoxi + axl + §tx\ = 0, if char k = 2,

where (x0, Xj, x 2 ) a r e homogeneous coordinates in P^. From (3.3) one sees at once that

XJJ is a smooth surface over k, since k(t)/k is separable (see the corollary to Lemma 6) and

all the fibers of Χυ —> U are smooth conies, except for Xt, which splits over the quadratic

extension k(t)(\/a mod t) into a pair of distinct lines.

Thus for any maximal <^.-order A, the scheme of its left ideals X is a complete smooth

surface over k, and the morphism X —*• C satisfies all the properties in II of Theorem 1.

For the proof that the correspondence A H-» C is bijective, note that all maximal orders

in Av are C-forms in the etale topology of a certain standard order Ao in the trivial qua-

ternion algebra, namely, that having the local representation (3.1) with a = β = 1. Similarly,

if Xo —> C is the scheme of left ideals of the order Ao, then X —• C is locally isomorphic

in the etale topology to XQ —• C. Thus, according to the standard cohomological descrip-

tion of forms, to have a bijection it is enough to show that the natural morphism of the etale

sheaves of automorphisms Aut Ao —• Aut Xo is an isomorphism. Outside the critical points

this is well known [5]; at a critical point this can be verified directly using the explicit forms

(3.1) and (3.3). We omit this simple verification (see [4]).

It is clear that, in the bijective correspondence A *-> X, corresponding to the maximal

orders of A^ we have precisely the standard forms F' —*• C whose generic fibers are iso-

morphic to F . This completes the proof of Theorem 3.

REMARK. Part (4) of Theorem 3 gives a description of the relative minimal models of

function fields k(F)/k(C) of genus 0 over a smooth algebraic curve C (compare [18]).

PROOF OF THEOREM 4. Let /: F —* C be a standard form of family II and suppose

that (Ώ,ρ- • Ω,ρ) = 8. Then, by (2) and (3) of Theorem 3, / is smooth, and F — FN for

some N> 0. It is well known (see [1 ]) that for Ν Φ 1 all the F ^ are minimal, and hence

F is minimal. As in the proof of (2) of Theorem 3, if F — Fj then F contains a curve (the

section X), which can be contracted by the Castelnuovo-Enriques criterion. Under this con-

traction F will be a surface F' with Pic F' — Z, and it can easily be deduced from the proof

of Theorem 1 that F' - P£.

Now suppose that (Ω^. · Ω,Ρ) Φ 8. Then the morphism /: F —* C is not smooth, and

by Theorem 3

Pic F=f

Suppose that F is not minimal. Then there must be some exceptional curve of the first kind

X C F; let a, b € Ζ be such that X ~ aFt - bKF, where Ft is some generator of/* Pic C

(the class of a fiber over some t £ C), and KF is the canonical divisor. Since there are no

contractible curves in the fibers of/, it follows that

0<(X-Ft)=2degtb-,
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that is, b > 0. We have

(X • X)

(X • KF)=—2adegt~b{QF

(3.4)

where m > 1 is the number of geometric components of X. Set η = {£lF · £lF). Then from

(3.4) we get

—nb2 + 2mb + m=0. (3.5)

For η < 0 this equation does not have solutions in natural numbers m and b, and hence the

corresponding surfaces are minimal. If 1 < η < 9 we solve (3.5) to get

η

In order for integer solutions to exist, m(m + n) must be the square of an integer; that

is, the following equation must be solvable in natural numbers:

m(m-\-n)=r2, \^.n^9. (3.6)

Let d = h.c.f.(w, m + «); then we must have m < (n - d)/2. From this it is easy to

obtain all solutions of (3.6), and so all solutions of (3.5). We have

η

3
5
6
6

m

1
4
2
2

a

— 1
- 3
—2
— 1

1
2
1
1

degt

1
1
1
2

It remains to verify that exceptional curves with the indicated numerical characteristics

actually exist on the corresponding surfaces. Since

and

we have

- X

(KF-X-Ft) = — l)deg*< 0,

dimH°(F, QF®GF(— X)) = dimH2(F,OF{X)) = 0.

By the Riemann-Roch theorem

- m + m
dim H°{F, ΟF{X)) + 1 = 1.

Hence all the numerical types indicated in the table actually occur, and surfaces F with

η = 3, 5 and 6 are not minimal. Since rk Pic F = 2, F can contain more than 1 contract-

ible curve X. After the contraction of X we obtain a surface F' of family I for which we

have (Ω,ρ, • Ω^<) = 4, 9 or 8 respectively. The theorem is proved.
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PROOF OF THEOREM 5. (1) Let η = (£lF • S2F). Let us check that on a surface F

with « = 3, 5 or 6, Ώ,ρ1 is ample. By the numerical criterion of ampleness we have to show

that F does not contain irreducible reduced curves Υ such that (Y · ~KF) < 0. Since

dim H°(F, Ω^ 1 ) > η + 1, if such a curve were to exist it would have to be either a fixed

component of ΙΩ^ 11, or a curve with (Y · KF) = 0 and (Υ · Υ) < 0.

If Υ is a fixed component, then Υ aFt - KF, where a > 1. We have

(Y- -KF) = —

(Y . Y) = ~

(Y-Ft) = 2degt,

p() +

From the third equation it follows that Υ can have at most 2 geometric components, or 1

component of multiplicity 2. If η > 3 then the final inequality implies that Υ is geometri-

cally reducible or multiple, which contradicts the second equation for odd n. On the other

hand, if the number of geometric components or the multiplicity is not greater than 2 then

from the formula for the genus we get p(Y) > -1, and for η > 5 this contradicts the fourth

inequality.

Similarly, if Υ ~ -aFt - βΚΡ, with β > 1, and (Y • KF) = 0, then

(Y • KF) = 2adegt-f,n = O, (Y • Y) = — 2ctfdegf< 0.

Let Υ = q Σ^1 Yt, where the Y( are connected components and q is the multiplicity.

Since (Ϋ, · KF) = 0 and (F f · F,·) < 0, we have (F(. · Ϋ.) = - 2 and p(F(.) = 0 (by (1.2)).

Hence (Y • Y) = -2q2m, and (F f · Y) = 2(3 deg t = deg t • m • q • s, where s = (F(. · F_)

is the number of points of intersection of the geometric fiber with any of the connected

components Y{. Making the corresponding substitutions, we get 2q2m = m2q2s2n/4, or

ms2n = 8, which is only possible for η = 1, 2, 4 or 8. Thus the first assertion is proved.

(2) If η = 8 then there exists an TV such that F — FN. Let S C F ^ be the section

with (S · S) = -TV; then (S · ~KFN) = ~N + 2, so that for TV > 2 Ω ^ , and hence also

Ω^ 1 , cannot be ample. It is trivial to check that Ω^ 1 is ample, even very ample, if TV = 0

or 1.

(3) Let η = 1, 2 or 4, and suppose that F has a further representation h: F —> C' in

the standard form II. Then for the numerical characters of the geometric fiber F_, = h ~x{t')

for t' G. C' we get immediately the single possibility

-F7-4KF, n=\,

FT, ~.—Fj — 2KF, η - 2,

— FJ — KF, η = 4,

where F_ is the geometric fiber of/, f ε C. Now using the same arguments as in (1), and

also the Riemann-Roch theorem, we see that these possibilities are realized if and only if

Ω^ 1 is ample. Note that from the property (b) of del Pezzo surfaces (see p. 30) one sees

that for η = 1 and 2 F has an involution which, as one easily checks, interchanges the two

standard morphisms / and h.
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If η = 7, then F is not minimal, and we have either a contraction F —• F ^ of one ex-

ceptional curve, or F —>• Pi of two. In either case F contains only 3 curves with negative

selfintersection, and an easy analysis shows that F must contain an exceptional curve of the

first kind defined over some inseparable extension of k. Then, as in the proof of (2) of

Theorem 3, we see that it is in fact defined over k, and can thus be contracted. This con-

cludes the proof.

Theorems 5, 4 and 1 immediately give us the following minimality criterion for del

Pezzo surfaces, which generalizes a criterion of Segre for cubic surfaces.

COROLLARY. Let F be a del Pezzo surface, and let (£lF • Ω.Ρ) = 3, 5, 6 or 9. Then

F is minimal if and only if Pic F — Z. // ( Ω Ρ · £2F) = 1, 2 or 4 then F is minimal if and

only if either Pic F — Z, or Pic F — Ζ θ Ζ and F belongs to family II In the remaining

cases (Ω^. · Ω,Ρ) = 1 or 8, F is minimal only if (Ω,Ρ · Ω Ρ ) = 8 and either Pic F =* Z, or

F — C χ C', where C and C' are smooth curves of genus 0.

§4. Minimal rational G-surfaces

DEFINITION (see [11]). A complete smooth surface F over a field k, together with a

finite group G acting on F by fc-automorphisms, is called a G-surface. A morphism f; F—*F'

of G-surfaces is called a G-morphism if g ° / = / ° g for all g e G. If any birational G-

morphism F —•> F' of smooth complete G-surfaces is a G-isomorphism, F is called a G-mini-

mal surface.

A G-invariant curve I C F i s said to be G-irreducible if X = Σ\Χ(, where Xt are dis-

tinct irreducible curves on F belonging to a single G-orbit.

Consider the exact sequence of G-modules

1-+-* (F) '-vDiv F-^Pic F-+-1

and the corresponding sequence of group cohomology

1 -> k {F)*a -* (Div Ff -»(Pic F)G -• . . . .

Let P(F) denote the image of (Div F)G in (Pic F)G; this is the subgroup of Pic F generated

by the classes of invertible sheaves of the form 0X{F), where X is a G-invariant divisor.

Let L G P(F) be an invertible sheaf; then there is a natural structure of G-modules on

the vector spaces H'(F, V).

One sees easily that Ω F e P(F). In fact, Ω^ — 0F(K), where we can choose Κ to be

the divisor of some G-invariant differential 2-form.

Note, finally, that the pairing Pic F χ Pic F —> Ζ defined by the intersection number

is G-invariant if F is a G-surface.

PROOF OF THEOREM 1G. We will analyse step-by-step the proof of Theorem 1, and

pause only over those points which require further considerations.

Step 1. Lemmas 1 and 2 do not depend on the G-structure.

Step 2. In Lemma 3 Pic F must be replaced by P(F), and L G P(F); property (3)

must be replaced by

(3G) L cannot be represented in the form Ll ® L2, with Li £ P(F), Li Φ &F and

dim H°(F, L,) > 1 for / = 1, 2.

In the proof Η can be taken as the G-orbit of any very ample sheaf.
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Step 3. In the proof of Lemma 4 (a) the linear system \L\ cannot have a fixed com-

ponent, since otherwise the fixed component would obviously be a G-curve, so that L would

not satisfy (3G). For the same reason X must be (/-irreducible and G-reduced. If X is also

λ-irreducible, the subsequent argument goes through without any change. If X = ΣΧ{, then

Xj is reduced and irreducible for each /, and (X- · Xj) < 0, since (X · X) < 0. Furthermore

the sheaf Li = ^F(Xt) satisfies all the conditions of Lemma 4 without G-structure, and so a

contradiction is reached in the same manner.

Assertion 4(b) goes through without change; one supposes throughout, unless the con-

trary is stated, that all the invertible sheaves occurring belong to P(F).

Step 4. In Lemma 5 and subsequently, isomorphism must be taken to mean G-iso-

morphism. The morphism /: F —>• Proj R = C constructed in the proof of Theorem 1 is ob-

viously a G-morphism; the G-structure on C is induced by the action of G on the ring R. In

Lemma 4 the first assertion does not depend on the G-structure. In the second assertion as

to the irreducibility of the fibers, one has to understand the G-irreducibility of fibers over a

G-point t ε G (where a G-point is taken to be a G-orbit of any point). The remaining asser-

tions of the lemma are independent of the G-structure.

Finally, the assertion about P(F) is obtained by means of the same arguments, using the

fact that all the terms of the spectral sequence are G-modules. From (1.7) we get the se-

quence

0 - Pic 0 C •-+- Pic6' F - * Pic0' (F/C) - * . . . ,

whence PicGF - Ζ Φ Ζ , and one sees easily that P(F) C PicGF is a subgroup of finite index.

This completes the proof of Theorem 1G.
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