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On cubic surfaces with a rational line

Andreas-Stephan Elsenhans and Jörg Jahnel

Abstract. We report on our project to construct non-singular cubic sur-
faces over Q with a rational line. Our method is to start with degree 4
Del Pezzo surfaces in diagonal form. For these, we develop an explicit
version of Galois descent.
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1. Introduction

1.1. The configuration of the 27 lines upon a smooth cubic surface is
highly symmetric. The group of all permutations respecting the canon-
ical class as well as the intersection pairing is isomorphic to the Weyl
group W (E6) of order 51 840.

When S is a cubic surface over Q, the absolute Galois group Gal(Q/Q)
operates on the 27 lines. This yields a subgroup G ⊆ W (E6). It is an open
problem whether each of the 350 conjugacy classes of subgroups of W (E6)
may be realized by a cubic surface over Q.

Exactly 172 of the 350 conjugacy classes fix a line. We constructed
examples of cubic surfaces overQ realizing each of these subgroups. The goal
of this note is to report on our investigations.

Remark 1.2. The analogous question for Del Pezzo surfaces of degree 4
is somewhat easier as it leads to subgroups of W (D5). B. È. Kunyavskij,
A.N. Skorobogatov, and M.A. Tsfasman [4] showed that every subgroup
of W (D5) may be realized by a surface defined over Q.

The first author was supported in part by the Deutsche Forschungsgemeinschaft (DFG)
through a funded research project.
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2. Constructions

2.1. Cubic surfaces with a rational line are closely related to Del Pezzo sur-
faces of degree 4. Indeed, blowing down the line leads to a degree 4 Del
Pezzo surface having a rational point. On the other hand, blowing up a ra-
tional point on a degree 4 Del Pezzo surface yields a cubic surface with a
rational line. These two constructions may easily be made explicit.

Constructions 2.2 (Cubic surfaces versus Del Pezzo surfaces of degree 4).
Let a base field K be fixed once and for all.

i) For two linear forms l0, l1, suppose that the line l0 = l1 = 0 is contained
in the cubic surface S given by F (x0, . . . , x3) = 0. Then, F may be written
as F = l0q0 + l1q1 for quadratic forms q0 and q1. The corresponding degree 4
Del Pezzo surface V is given by q0 + l1x4 = q1 − l0x4 = 0.

ii) On the other hand, let a Del Pezzo surface V of degree 4 be given by
Q0(x0, . . . , x4) = Q1(x0, . . . , x4) = 0. If (0 : 0 : 0 : 0 : 1) ∈ V then Q0 and Q1

may be written as Q0 = q0+l0x4 and Q1 = q1+l1x4 for q0, q1 quadratic forms
and l0, l1 linear forms in x0, . . . , x3, only. The corresponding cubic surface S
is given by q0l1 − q1l0 = 0.

Remarks 2.3. a) These two constructions are inverse to each other.

b) One may start construction ii) as well with arbitrary generators of the
pencil spanned by Q0 and Q1.

Fact 2.4. Let A be a symmetric matrix representing the quadratic form

q0|l0=0. If the eigenvalues of A are z1, z2, z3 then there is a symmetric matrix

representing Q0 with eigenvalues (−1), 1, z1, z2, z3.

Corollary 2.5. i) In particular, Q0 is of rank <5 if and only if q0|l0=0 is of

rank < 3. Hence, the five degenerate quadratic forms in the pencil [Q0, Q1]
are in one-to-one correspondence with the five tritangent planes through the

line considered.

ii) If the eigenvalues of a symmetric matrix representing Q0 are 0, Z1, . . . , Z4

then “l0 = 0” is a tritangent plane on S. The conic, defined by S on this

plane, splits into two lines over the field K(
√

Z1Z2Z3Z4).

Example. Consider the case that Q0 := a0x
2

0
+ . . . + a4x

2

4
and

Q1 := b0x
2

0
+ . . .+b4x

2

4
are diagonal forms over the field K. Then, the five tri-

tangent planes correspond to the points ((−bi) : ai) ∈ P1 as (−biQ0 + aiQ1)
is degenerate. The conics split over the fields

K
(
√

∏

j 6=i

(−biaj + aibj)
)

for i = 0, . . . , 4. Observe that the product of the five radicands is a per-
fect square.

On the corresponding cubic surface, all 27 lines are defined over

L = K
(
√

∏

j 6=0

(−b0aj + a0bj), . . . ,
√

∏

j 6=4

(−b4aj + a4bj)
)

.

Indeed, the subgroup of W (E6) stabilizing a line is clearly of or-
der 51840/27 = 1920. It is actually the semi-direct product T ⋊ S5, where
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T ⊂ (Z/2Z)5 is the subgroup of order 16 formed by the elements having an
even number of components equal to 1. As Gal(Q/L) stabilizes not only the
five tritangent planes but also the lines on them, it must act through the
trivial subgroup of T ⋊ S5.

Construction 2.6 (Explicit Galois descent). Let A be a commutative étale
algebra of degree 5 over Q and ι0, . . . , ι4 : A → C be the five embeddings.

i) For general a,b ∈A, the equations

ι0(a)x
2

0
+ · · ·+ ι4(a)x

2

4
= ι0(b)x

2

0
+ · · ·+ ι4(b)x

2

4
= 0

define a Del Pezzo surface V of degree 4 over Q.

ii) Let l be a linear form in five variables with coefficients in A.
Then, by symmetry, the quadratic forms ι0(a)(l

ι0)2 + · · · + ι4(a)(l
ι4)2 and

ι0(b)(l
ι0)2 + · · · + ι4(b)(l

ι4)2 have rational coefficients. If lι0 , . . . , lι4 are lin-
early independent then we have a Del Pezzo surface V0 of degree 4 over Q
such that its base change to Q is isomorphic to V .

Remarks 2.7. a) This construction is analogous to [2, Theorem 6.1].

b) The five tritangent planes on V0 correspond to the points
((−ιi(b)) : ιi(a)) ∈ P1. Hence, the Galois operation on them is the
same as that on the embeddings ιi.

c) When a 6= 0, the conic on the tritangent plane corresponding
to ((−ιi(b)) : ιi(a)) splits into two lines over the field

Q

(

ιi(−b/a),
√

∏

j 6=i

(−ιi(b)ιj(a) + ιi(a)ιj(b))
)

. (2.1)

The radicand may be rewritten as N(a) ιi(a
3 δA/Q(−b/a)), where δA/Q de-

notes the different of an element of A.

2.8. Thus, given a subgroup G ⊆ T ⋊S5, there is the following strategy to
construct a cubic surface S over Q such that Gal(Q/Q) operates via G on
the 27 lines.

Strategy. i) Find a number field K, normal overQ, such that Gal(K/Q) ∼= G.
Identify the normal subextension K ′ ⊆ K such that Gal(K ′/Q) is the im-
age G′ of G in S5 [5].

ii) Find five elements r0, . . . , r4 ∈ K ′ with the properties below.

r0, . . . , r4 are permuted by G′ exactly via the embedding G′ ⊆ S5. Fur-
ther, the square roots ±

√

r0, . . . ,±
√

r4 are elements of K and acted upon
by G according to the embedding G ⊆ T⋊S5.

Put p(T ) := (T − r0) · . . . · (T − r4) and A := Q[T ]/(p). This is a com-
mutative étale algebra of degree 5 over Q with a distinguished element
r := (T mod (p)).

iii) Choose x ∈ A and put d := δA/Q(x). Set a := dr and b := −xa.

iv) Execute Construction 2.6 for a, b ∈ A. On the Del Pezzo surface V0 found,
search for a Q-rational point. If none is found then go back to step iii).
Otherwise, determine the cubic surface S.
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Remarks 2.9. a) The properties required in ii) imply
√

r0 · . . . ·
√

r4 ∈ Q.
I.e., N(r) is a perfect square.

b) The construction yields N(a)a3 δA/Q(−b/a) = N(a)(d2r)2r. As the prod-
uct of the five radicands in (2.1) is a square, the norm of a is a perfect
square automatically.

3. Examples

3.1. There are 172 conjugacy classes of subgroups of W (E6) that fix a line.
We constructed examples for each such group.

Actually, 81 of the 172 classes also stabilize a double-six and 49 of the
172 classes stabilize a pair of Steiner trihedra. 34 classes do both. Thus, ex-
amples for 96 of the 172 conjugacy classes had been constructed before [2, 3].
The remaining 76 classes were of interest.

After naive trials and an extensive search through surfaces with small
coefficients, only six of the 76 classes remained open. For these, we applied
Strategy 2.8.

Remark 3.2. In Strategy 2.8, we regularly run into reiteration, because there
were no Q-rational points on the Del Pezzo surfaces of degree 4.

3.3. The list containing our examples of cubic surfaces is available on
the second author’s web page at http://www.uni-math.gwdg.de/jahnel/

Arbeiten/Kub Fl/list rat ger.txt. The numbering of the subgroups is
that created by GAP, version 4.4.12.

Example. As a conclusion, let us show how Strategy 2.8 works on a particu-
lar example. We consider the subgroup of number 107.

Abstractly, this is a group G of order 16. Its center is isomorphic to the
Klein four-group. The operation on the 27 lines causes orbits of lengths 1, 2,
4, 4, and 16. On the two orbits of size four, G acts via two different quotients,
both isomorphic to the dihedral group D4 of order eight. The operation on
the five tritangent planes through the rational line is via a quotient G′ of
order four. The orbits are of sizes 1, 2, and 2.

i) An example of a field with Galois group G is the composite K := K1K2

of K1 := Q
(

√

3±
√
3
)

and K2 := Q
(

√

−9±
√
6
)

. Then, the subfield corre-
sponding to G′ is K ′ = Q(

√
3,
√
6) = Q(

√
2,
√
3). Observe that both fields

K1 and K2 contain K ′. Further, both are extensions of Q of type D4.

ii) Thus, we chose r0, . . . , r4 to be 2, 3±
√
3, and −9±

√
6. This yields

p(T ) = (T − 2)[(T − 3)2 − 3][(T + 9)2 − 6] .

iii) We worked with x := r = (T mod (p)).
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iv) The biggest coefficient of the resulting del Pezzo surface V0 is
524 391 211 895 464. An isomorphic surface is given by the equations

4x2

0
+ 10x0x1 + 20x0x2 − 112x0x3 − 134x0x4 + 7x2

1
− 26x1x2 − 134x1x3

− 148x1x4 − 2x2

2 + 140x2x3 − 2x2x4 + 10x2

3 − 38x3x4 − 323x2

4

= 47x2

0
− 18x0x1 + 10x0x2 − 188x0x3 − 178x0x4+63x2

1
−22x1x2+376x1x3

− 86x1x4 + 71x2

2 − 580x2x3 + 146x2x4 − 364x2

3 − 296x3x4 − 21x2

4 = 0 .

Here, a point search in magma with an initial height limit of 100 shows 14
rational points. Blowing up (8 : −13 : 4 : 2 : −3) leads to a cubic surface with
coefficients up to 3 838 320. Reembedding gives us the final result, the cubic
surface V with the equation

2x2y + 6x2z − 4xy2 + 6xyz + 4xyw − 10xz2 − 4xzw − 7xw2 + 2y3

− 9y2z − 4y2w + 4yz2 − 26yzw+ 6yw2 + z3 + 10z2w − 7zw2 − 5w3 = 0 .

Remark 3.4. The rational line on V connects (5 : 0 : 0 : −7) with
(0 : 5 : 10 : 2).

Remark 3.5. There are actually a few more particularities characterizing the
subgroup of number 107.

a) First of all, the two D4 extensions K1 und K2 become cyclic over the same

quadratic field Q(
√
2).

b) On the other hand, over Q(
√
3) and Q(

√
6), they are of Kleinian type.

However, there is yet another oddity. While Gal(K1/Q(
√
3)) operates on the

corresponding four lines via two disjoint two-cycles, Gal(K2/Q(
√
3)) acts

on its orbit by double-transpositions. Over Q(
√
3) instead of Q(

√
6), the

situation is vice versa.

To realize such a behaviour, it was essential to choose r1 in Q(
√
3) fulfilling

N(r1) ∈ 6(Q∗)2 and r3 in Q(
√
6) such that N(r3) ∈ 3(Q∗)2.
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[4] Kunyavskij, B. È., Skorobogatov, A.N., and Tsfasman, M.A.: Del Pezzo surfaces

of degree four, Mém. Soc. Math. France 37 (1989), 1–113.

[5] Malle, G. and Matzat, B. H.: Inverse Galois theory, Springer, Berlin 1999.

[6] Manin, Yu. I.: Cubic forms, algebra, geometry, arithmetic, North-Holland Pub-
lishing Co. and American Elsevier Publishing Co., Amsterdam, London, and
New York 1974.



6 Andreas-Stephan Elsenhans and Jörg Jahnel

Andreas-Stephan Elsenhans
Mathematisches Institut
Universität Bayreuth
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