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Preface

The main purpose of the present treatise is to give an account of some of the
topics in algebraic geometry which while having occupied the minds of many
mathematicians in previous generations have fallen out of fashion in modern
times. Often in the history of mathematics new ideas and techniques make the
work of previous generations of researchers obsolete, especially this applies
to the foundations of the subject and the fundamental general theoretical facts
used heavily in research. Even the greatest achievements of the past genera-
tions which can be found for example in the work of F. Severi on algebraic
cycles or in the work of O. Zariski's in the theory of algebraic surfaces have
been greatly generalized and clarified so that they now remain only of histor-
ical interest. In contrast, the fact that a nonsingular cubic surface has 27 lines
or that a plane quartic has 28 bitangents is something that cannot be improved
upon and continues to fascinate modern geometers. One of the goals of this
present work is then to save from oblivion the work of many mathematicians
who discovered these classic tenets and many other beautiful results.

In writing this book the greatest challenge the author has faced was distilling
the material down to what should be covered. The number of concrete facts,
examples of special varieties and beautiful geometric constructions that have
accumulated during the classical period of development of algebraic geometry
is enormous and what the reader is going to find in the book is really only a
tip of the iceberg; a work that is sort of a taste sampler of classical algebraic
geometry. It avoids most of the material found in other modern books on the
subject, such as, for example, [10] where one can find many of the classical
results on algebraic curves. Instead, it tries to assemble or, in other words, to
create a compendium of material that either cannot be found, is too dispersed to
be found easily, or is simply not treated adequately by contemporary research
papers. On the other hand, while most of the material treated in the book exists
in classical treatises in algebraic geometry, their somewhat archaic terminology
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and what is by now completely forgotten background knowledge makes these
books useful to but a handful of experts in the classical literature. Lastly, one

must admit that the personal taste of the author also has much sway in the
choice of material.

The reader should be warned that the book is by no means an introduction
to algebraic geometry. Although some of the exposition can be followed with
only a minimum background in algebraic geometry, for example, based on
Shafarevich’s book [577], it often relies on current conomological techniques,
such as those found in Hartshorne’s bo8& 1]. The idea was to reconstruct
a result by using modern techniques but not necessarily its original proof. For
one, the ingenious geometric constructions in those proofs were often beyond
the authors abilities to follow them completely. Understandably, the price of
this was often to replace a beautiful geometric argument with a dull cohomo-
logical one. For those looking for a less demanding sample of some of the
topics covered in the book the recent beautiful book [39] may be of great use.

No attempt has been made to give a complete bibliography. To give an idea
of such an enormous task one could mention that the report on the status of
topics in algebraic geometry submitted to the National Research Council in
Washington in 1928 [582] contains more than 500 items of bibliography by
130 different authors only in the subject of planar Cremona transformations
(covered in one of the chapters of the present book.) Another example is the
bibliography on cubic surfaces compiled by J. E. Hill [326] in 1896 which
alone contains 205 titles. Meyer’s article [425] cites around 130 papers pub-
lished 1896-1928. The title search in MathSciNet reveals more than 200 papers
refereed since 1940, many of them published only in the last twenty years. How
sad it is when one considers the impossibility of saving from oblivion so many
names of researchers of the past years who have contributed so much to our
subject.

A word about exercises: some of them are easy and follow from the defi-
nitions, some of them are hard and are meant to provide additional facts not
covered in the main text. In this case we indicate the sources for the statements
and solutions.

I am very grateful to many people for their comments and corrections to
many previous versions of the manuscript. | am especially thankful to Sergey
Tikhomirov whose help in mathematical editing of the book was essential for
getting rid of many mistakes in the previous versions. For all the errors still
found in the book the author bears sole responsibility.
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1
Polarity

1.1 Polar hypersurfaces

1.1.1 The polar pairing

We will take C as the base field, although many constructions in this book
work over an arbitrary algebraically closed field.

We will usually denote byF a vector space of dimension+ 1. Its dual
vector space will be denoted iy

Let S(F) be thesymmetric algebraf E, the quotient of the tensor algebra
T(E) = ®4>0E®? by the two-sided ideal generated by tensors of the form
v w—w®uv,v,w € E. The symmetric algebra is a graded commutative
algebra, its graded componet$( E) are the images aE®? in the quotient.
The vector spac8?(E) is called thei-th symmetric poweof E. Its dimension
is equal(“1™). The image of a tensan ® - -- ® vq in S4(E) is denoted by
vy - Vg

The permutation grou®, has a natural linear representationfi¥? via
permuting the factors. The symmetrization operatge s, o iS a projection
operator onto the subspace of symmetric ten$sr) = (E4)S< multi-
plied byd!. It factors throughs?( £) and defines a natural isomorphism

SUE) — S4(E).
ReplacingFE by its dual spacéV, we obtain a natural isomorphism
pa: SUEY) — Sa(EY). (1.1)

Under the identification of £V )®¢ with the spacd E®?)V, we will be able
to identify S;(EV) with the space Hom(# C)®< of symmetricd-multilinear
functions ¢ — C. The isomorphisnyp, is classically known as theotal
polarization map.

Next we use that the quotient m&? — S?(E) is a universal symmetric
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d-multilinear map, i.e. any linear map®¢ — F with values in some vector
spaceF factors through a linear mag?(E) — F.If F = C, this gives a
natural isomorphism
(E®d)\/ — Sd(E\/) BN Sd(E)V.
Composing it withp;, we get a natural isomorphism
SYEY) — SYE)Y. (1.2)
It can be viewed as perfect bilinear pairing, fi@ar pairing
(,): SYEY)® SYE) — C. (1.3)

This pairing extends the natural pairing betweemnd £V to the symmetric
powers. Explicitly,

(- laywy - wg) = > lperay(wr) -+ L1 (g (wa).-
o€ESG,y
One can extend the total polarization isomorphism foagtial polarization
map

() SYUEY)® S*(E) — S“HEY), k<d, (1.4)

(Iy - lgywy -+ wg) = Z (L, -+ Ly wy -+ - wg) H .
1<ir <. <ig<n JF#LL g
In coordinates, if we choose a bas,...,&,) in E and its dual basis
to,---,t, in EY, then we can identifyS(E") with the polynomial algebra
Clto, - - -, tn] andS4(EY) with the spac€|ty, . . . , t,]s of homogeneous poly-
nomials of degred. Similarly, we identifyS?¢(E) with C[¢, . . ., &,]. The po-
larization isomorphism extends by linearity the pairing on monomials

n 150

. ”&n>:{ioy...¢n! if (i0, .- in) = (jos- -+ jn)s

<t6°-~-ti" Jo '
0 otherwise.

One can give an explicit formula for pairing (1.4) in terms of differential
operators. Sincét;,£;) = d;;, it is convenient to view a basis vectgy as
the partial derivative operatét; = % Hence any element € S*(FE) =
Cl&o, - - - ,&n]a can be viewed as a differential operator

Dy = (00, ...,0n).
The pairing (1.4) becomes

<w(§07~"7§n)7f(t07"'7tn)> = Dw(f)



1.1 Polar hypersurfaces 3

For any monomiad® = 9 - -- 9i» and any monomiall = tJ° - - - ti», we
have
g ifj—i>0,

Al () = {0—> (1.5)

0 otherwise.

Here and later we use the vector notation:

Ry R |
il =49l 1,] i:F’ MZZO‘F""FZn-

The total polarizatiory of a polynomialf is given explicitly by the following
formula:

f(v1,...,04) = Dy ooy (f) = (Do, © ... 0 Dy, )(f)-

Takingv, = ... = vg = v, we get

flo,...,0) =dlf(v) =Du(f) =Y ({)a'd'f. (1.6)
li|=d
Remarkl.1.1 The polarization isomorphism was known in the classical liter-
ature as theymbolic methadSupposef = [ is ad-th power of a linear form.
ThenD,(f) = dl(v)?~! and

Dy o...0D, (f)=d(d—1)---(d—k+ 1)l(vy)---1(vp)14".

In classical notation, a linear forjn’ a;z; on C"*! is denoted by:, and the
dot-product of two vectors, b is denoted by ab). Symbolically, one denotes
any homogeneous form ¢ and the right-hand side of the previous formula
reads agl(d — 1) --- (d — k + 1)(ab)kad=F.

Let us takeF = S™(UV) for some vector spade and consider the linear
spaceS?(S™(UV)Y). Using the polarization isomorphism, we can identify
(S™(UVY))Y with S™(U). Let (&, .. .,&-) be abasis i/ and (g, .. ., tr+1)
be the dual basis itrV. Then we can take for a basis. & (U) the monomials
¢'. The dual basis i5 (U") is formed by the monomialx. Thus, for any
f e s™{UY), we can write

mlf = Z (Ti")aixi. @a.7)

lij=m

In symbolic form,m!f = (a,)™. Consider the matrix

e
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where( (()k), e ﬁk)) is a copy of a basis iV. Then the spac€?(S™(U))
is equal to the subspace of the polynomial algab[r(gj(.”)] ind(r + 1) vari-

ablesgj@ of polynomials which are homogeneous of degrem each column
of the matrix and symmetric with respect to permutations of the columns. Let
J C{1,...,d}with#J = r+1 and(J) be the corresponding maximal minor
of the matrix=. Assumer+1 dividesdm. Consider a product df = 7‘,% such
minors in which each column participates exaetlyimes. Then a sum of such
products which is invariant with respect to permutations of columns represents
an element front¢(S™(U)) which has an additional property that it is invari-
ant with respect to the group SL{IZ SL(r + 1, C) which acts orJ by the
left multiplication with a vecto(¢, . . ., &,.). TheFirst Fundamental Theorem
of invariant theory states that any elementsit( S (U))S-(Y) is obtained in
this way (see 199]). We can interpret elements 8§f (S™(U")V) as polyno-
mials in coefficients ofi; of a homogeneous form of degréen r + 1 vari-
ables written in the form (1.7). We write symbolically an invariant in the form
(J1)--- (Jr) meaning that it is obtained as sum of such products with some
coefficients. If the numbed is small, we can use letters, sayb, ¢, ..., in-
stead of numbers, . .., d. For example(12)2(13)%(23)? = (ab)?(bc)?(ac)?
represents an element $¥ (54(C?)).

In a similar way, one considers the matrix

1 d 1 s
IO IO R

t(s)

r

SR S
The product o maximal minors such that each of the fidstolumns occurs
exactlyk times and each of the lastolumns occurs exactjytimes represents
a covariantof degreep and orderk. For example{ab)?a,b, represents the
Hessian determinant

2°f *f
2
e(f) et( gf} 8£§2§ny2>

Oxo0x1 Omg

of a cubic ternary forny.

The projective spacef lines in E will be denoted by E|. The spacéE" |
will be denoted byP(E) (following Grothendieck’s notation). We cdl(E)
thedual projective spacef | E|. We will often denote it by E|V.

A basis&, ..., &, in E defines an isomorphist® = C**! and identi-
fies |E| with the projective spac®" := |C"*!|. For any non-zero vector
v € E we denote byjv] the corresponding point itE|. If £ = C**! and
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v = (ag,...,a,) € C"*! we setfv] = [ag,...,a,]. We call[ag,...,an]
the projective coordinatesf a point[a] € P". Other common notation for the
projective coordinates dt] is (ap : a1 : ... : ay), or simply(ag, ..., a,), if

no confusion arises.

The projective space comes with the tautological invertible stiggf(1)
whose space of global sections is identified with the dual spacelts d-th
tensor power is denoted 9z (d). Its space of global sections is identified
with the symmetrial-th powerS<¢(E").

For anyf € S%4EY),d > 0, we denote by (f) the corresponding ef-
fective divisor from|O,g(d)|, considered as a closed subschemerif not
necessary reduced. We cil( /) ahypersurfacef degreed in |E| defined by
equationf = 0! A hypersurface of degree 1 istgperplane. By definition,
V(0) = |E| andV (1) = . The projective spacg(E")| can be views as the
projective space of hypersurfaces ij. It is equal to the complete linear sys-
temO,g(d)|. Using isomorphism (1.2), we may identify the projective space
|S¢(E)| of hypersurfaces of degregin |EV| with the dual of the projective
spacelSYEV|. A hypersurface of degragin |EV| is classically known as an
envelopeof classd.

The natural isomorphisms

(BY)®! 2 HO(|B|, O (1Y), Sa(EY) = HO(IE|*, 0)p(1)%4)

allow one to give the following geometric interpretation of the polarization
isomorphism. Consider the diagonal embeddipg |E| — |E|?. Then the
total polarization map is the inverse of the isomorphism

85 HY(|B|Y, 01 (1)X) S0 — HO(|E|, Oy ().

We viewagdy + - - - + a0, # 0 @s a point € |E| with projective coordi-
natesag, . . ., ay).

Definition 1.1.1 Let X = V(f) be a hypersurface of degrekin |E| and
x = [v] be a point in| E|. The hypersurface

P (X) == V(Dye(f))
of degreel — k is called thek-th polar hypersurfacef the pointa with respect
to the hypersurfac® (f) (or of the hypersurface with respect to the point).

1 This notation should not be confused with the notation of the closed subset in Zariski topology
defined by the ided]f). It is equal toV ( f)red.
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Examplel.1.1 Letd =2,i.e.

n
f = Zaut? +2 Z aijtitj
=0

0<i<j<n
is a quadratic form o€ 1. For anyx = [ag,...,a,] € P*, P.(V(f)) =
V(g), where
)
g = Z ai(r“)i‘t]: =2 Z aioq,jtj, Q5 = Qj.
=0 0<i<j<n

The linear map — D, (f) is a map fromC"*! to (C**!)¥ which can be
identified with thepolar bilinear formassociated tg' with matrix 2(c; ).

Let us give another definition of the polar hypersurfages(X). Choose
two different pointsy = [ao, ..., a,] @andb = [bo, ..., b,] in P™ and consider
the line/ = ab spanned by the two points as the image of the map

@ : Pt =P [ug,ur] — uga + urb = [agug + bou, . . . , anto + bpuy]

(a parametric equation é§. The intersectioinX is isomorphic to the positive
divisor onP! defined by the degre&homogeneous form

©*(f) = f(uoa + u1d) = f(apuo + bouy, . .., anug + bpuy).

Using the Taylor formula &f0, 0), we can write

1
()= muguTAkm(aab)a (1.8)
k+m=d
where
9% (f)
g (D) = 0).
km(a,0) 8u’58u’1”(0 0)

Using the Chain Rule, we get
Apm(ab) = Y (5 ()a b f = Dory (). (L.9)
li|=F,|j|=m
Observe the symmetry
Akm (aa b) = Amk}(bv a)' (110)

When we fixa and letb vary in P” we obtain a hypersurfacé(A(a, x)) of

degreed — k which is thek-th polar hypersurface oX = V() with respect
to the pointa. When we fixb and varya in P", we obtain them-th polar
hypersurfacé’ (A(z, b)) of X with respect to the poirit
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Note that
Dgryn (f) = Dar (Dym (f)) = Dem (a) = Dym (Der (f)) = Dax (f)(D)-
(1.11)
This gives the symmetry property of polars
be Pk (X) S ac Pbd—k(X). (1.12)

Since we are in characteristic Oyif < d, D, (f) cannot be zero for all. To
see this we use theuler formula:

df = Zt
Applying this formula to the partial derivatives, we obtain
dd—1)...(d-—k+1)f=>Y_ (H)t'a'f (1.13)
li|=F

(also called the Euler formula). It follows from this formula that, foriak d,

a€Pyp(X)oaeX (1.14)

This is known as theeciprocity theorem

Examplel.1.2 LetM,; be the vector space of complex square matrices of
sized with coordinates;;. We view the determinant functiadet : My — C
as an element a§%(M)), i.e. a polynomial of degreé in the variableg;;.
LetC;; = %?it For any pointA = (a;;) in M, the value ofC;; at A is equal
to theij-th cofactor ofA. Applying (1.6), for anyB = (b;;) € M4, we obtain

D ja-15(det) = DY (Dp(det)) = DY (D "bi;Cij) = (d — 11> bi;Cij(A)

ThusD% *(det) is a linear functiory_ ;;C;; on M. The linear map
1
(d—-1)!
can be identified with the functiod — adj(A), where adj(A]Js the cofactor

matrix (classically called thadjugate matrixof A, but not the adjoint matrix
as it is often called in modern text-books).

SN M) — My, A~ D% (det),

1.1.2 First polars

Let us consider some special cases.Xet V(f) be a hypersurface of degree
d. Obviously, any0-th polar of X is equal toX and, by (1.12), the-th polar
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P,.(X) isempty ifa ¢ X. and equal®” if a € X. Now takek = 1,d — 1.
Using (1.6), we obtain

n

_v oY
Da(f)iZazauﬂ

=0

ﬁDad*I(f) = a*f(a)ti-

Together with (1.12) this implies the following.
Theorem 1.1.1 For any smooth point € X, we have
P (X) =T,(X).
If « is a singular point ofX, P,.—.(X) = P". Moreover, for any: € P,
XNP,(X)={zeX:aeT,(X)}

Here and later on we denote Y, (X) the embedded tangent spaoé a
projective subvarietyX C P™ at its pointz. Itis a linear subspace & equal
to the projective closure of the affine Zariski tangent sgBgeX) of X atz
(see [307], p. 181).
In classical terminology, the intersectidghn P,(X) is called theapparent
boundaryof X from the pointa. If one projectsX to P*~! from the pointa,
then the apparent boundary is the ramification divisor of the projection map.
The following picture makes an attempt to show what happens in the case
whenX is a conic.

Pa(X)

\

Figure 1.1 Polar line of a conic

The set of first polarg’, (X) defines a linear system contained in the com-
plete linear systerf(?pn (d-1) | The dimension of this linear systemn. We
will be freely using the language of linear systems and divisors on algebraic
varieties (see [311]).
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Proposition 1.1.2 The dimension of the linear system of first polarg- if
and only if, after a linear change of variables, the polynomfigbecomes a
polynomial inr + 1 variables.

Proof LetX = V(). Itis obvious that the dimension of the linear system of
first polars< r if and only if the linear magz — S¢~1(EV),v — D,(f) has
kernel of dimension> n — r. Choosing an appropriate basis, we may assume
that the kernel is generated by vect6ts0, . . ., 0), etc. Now, it is obvious that

f does not depend on the variablgs. .., ¢, 1. O

It follows from Theoreml.1.1that the first pola®,(X) of a pointa with
respect to a hypersurfacé passes through all singular points ¥f One can
say more.

Proposition 1.1.3 Leta be a singular point ofX of multiplicity m. For each
r < deg X — m, P,~(X) has a singular point at of multiplicity m and the
tangent cone oP,-(X) at a coincides with the tangent coffeC, (X) of X at
a. For any pointb # a, ther-th polar P,-(X) has multiplicity> m — r ata
and its tangent cone at is equal to the-th polar of TC, (X)) with respect to
b.

Proof Let us prove the first assertion. Without loss of generality, we may
assume that = [1,0,...,0]. ThenX = V(f), where

F=t oty tn) F ™ i (b tn) o o fa(te, e t).
(1.15)

The equationf,,(¢1,...,t,) = 0 defines the tangent cone &f atb. The

equation ofP,-(X) is

d r

3 T ) =0
=0

o f
oty

Itis clear thafl,0,...,0] is a singular point o2~ (X) of multiplicity m with
the tangent con® (fo, (t1, ..., tn)).

Now we prove the second assertion. Without loss of generality, we may
assume that = [1,0,...,0] andb = [0,1,0,...,0]. Then the equation of
Py (X) is

f _ a-m9 fm 9" fa
— e =0.
oty 0 oty o oty 0

The pointa is a singular point of multiplicity> m — r. The tangent cone of

Py, (X) at the pointa is equal toV/(%;L=) and this coincides with the-th

polar of TG,(X) = V(f.,) with respect td. O
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We leave to the reader to see what happenssifd — m.

Keeping the notation from the previous proposition, consider &liheough
the pointa such that itintersect®” at some point: # o with multiplicity larger
than one. The closure ECX) of the union of such lines is called tle@velop-
ing coneof X at the pointa. If X is not a cone with vertex at, the branch
divisor of the projection : X \ {a} — P"~! from a is equal to the projection
of the enveloping cone. Let us find the equation of the enveloping cone.

As above, we assume that= [1,0, ..., 0]. Let H be the hyperplang = 0.
Write ¢ in a parametric formua 4 vz for somez € H. Plugging in equation
(1.15), we get

P(t) = td_mfm(ﬂcl, ol xn)—&—td_m_lfmﬂ(m, cesTm)+ o fa(za, . mn) =0,

wheret = u/v.

We assume thak # TC,(X), i.e. X is not a cone with vertex at (oth-
erwise, by definition, EQXX) = TC,(X)). The image of the tangent cone
under the projectiop : X \ {a} — H = P"~!is a proper closed subset of
H.If fp(x1,...,2,) # 0, then a multiple root ofP(¢) defines a line in the
enveloping cone. LeD(Ay,..., Ax) be the discriminant of a general poly-
nomial P = AqT* + ... + A, of degreek. Recall that

AoDi(Ao, ..., Ay) = (—1)*F"D/2Res(P, P)(Ay, . .., Ap),

where Res(P, B is the resultant of? and its derivativeP’. It follows from
the known determinant expression of the resultant that

k2 k+2

Dk(O,Al,...,Ak):(—].) 2 A%Dkfl(Al,..qu).

The equatiorP(t) = 0 has a multiple zero with £ 0 if and only if
Da—m(fm (), ..., fa(z)) = 0.

So, we see that

ECa(X) - V(Ddfm(fm(m)vafd(x)))ﬂ (116)
EC.(X)NTCo(X) C V(Da—m—1(fmt1(x), ..., fa(z))).

It follows from the computation o% in the proof of the previous Proposition
that the hypersurfacE(Dd_m(fm(1?), ..., fa(z))) is equal to the projection
of P,(X)NX to H.

SupposeV (Dg—m—1(fm+1(z), ..., fa(x))) and TG,(X) do not share an
irreducible component. Then

V(Da-m(fm (), -, fa(2))) \ TCa(X) NV (Da—m(fm (), ..., fa(x)))
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=VOa-m(fm(@),. .., fa(®))) \ V(Da-m-1(fm+1(2), ..., fa(z))) C ECa(X),

gives the opposite inclusion of (16), and we get

EC.(X) = VDu_m(funl@)s - fala))). (117)

Note that the discriminar®,_,, (Ao, ..., Ax) is an invariant of the group
SL(2) in its natural representation on degiebmary forms. Taking the diago-
nal subtorus, we immediately infer that any monomﬁl@ A’k entering in
the discriminant polynomial satisfies

k k
kY ie=2)si..
s=0

s=0

It is also known that the discriminant is a homogeneous polynomial of degree
2k — 2. Thus, we get

k
= Z Stg.
s=0
In our cases = d — m, we obtain that

d—m
deg V(Dam (fm (@), ..., fa(x))) = D (m+ s)
s=0

=m2d—-2m—2)+(d—m)(d—m—1)=(d+m)(d—m —1).

This is the expected degree of the enveloping cone.

Examplel.1.3 Assumen = d — 2, then

Do(fa—2(2), fa—1(z), fa(2)) = fa—1(z)® — 4f4—2(2) falz),
D2(0, fa—1(z), fa(z)) = fa—2(x) = 0.

Supposef;_»(z) and f4_ are coprime. Then our assumption is satisfied, and
we obtain

ECu(X) = V(fa_1(2)? — 4fa_2(2) fa(z)).

Observe that the hypersurfadésf,_,(z)) andV (f4(x)) are everywhere tan-
gent to the enveloping cone. In particular, the quadric tangent copeXrds
everywhere tangent to the enveloping cone along the intersectioqfef » (z))

with V(fa_1(z)).
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For any nonsingular quadri@, the mapz — P, (Q) defines a projective
isomorphism from the projective space to the dual projective space. This is a
special case of a correlation.

According to classical terminology, a projective automorphisniPbfis
called acollineation. An isomorphism fron¥| to its dual spac®(F) is called
acorrelation. A correlatiort : |E| — P(F) is given by an invertible linear map
¢ : E — EV defined unigquely up to proportionality. A correlation transforms
points in|E| to hyperplanes inE|. A pointz € |E| is calledconjugateto a
pointy € | E| with respect to the correlatiarnf y € ¢(x). The transpose of the
inverse mapo~! : BV — E transforms hyperplanes || to points in| E|. It
can be considered as a correlation between the dual sBagesnd|E|. It is
denoted by and is called thelual correlation. It is clear thatc" )Y = c. If
H is a hyperplane inE| andz is a point inH, then pointy € |E| conjugate
to = underc belongs to any hyperplarié’ in |E| conjugate taH undercV.

A correlation can be considered as a lind h®@ E)¥ spanned by a nonde-
generate bilinear form, or, in other words as a nonsingular correspondence of
type(1,1)in|E| x |E|. The dual correlation is the image of the divisor under
the switch of the factors. A paitz,y) € |E| x | E| of conjugate points is just
a point on this divisor.

We can define theomposition of correlations’ o ¢V. Collineations and
correlations form a grougPGL(E) isomorphic to the group of outer auto-
morphisms of PGL(4. The subgroup of collineations is of index 2.

A correlationc of order 2 in the groufEPGL(E) is called apolarity. In
linear representative, this means that= \¢ for some nonzero scalar After
transposing, we obtaih = +1. The case\ = 1 corresponds to the (quadric)
polarity with respect to a nonsingular quadrid if] which we discussed in this
section. The cask = —1 corresponds to aull-systenfor null polarity) which
we will discuss in Chapters 2 and 10. In terms of bilinear forms, a correlation
is a quadric polarity (resp. null polarity) if it can be represented by a symmetric
(skew-symmetric) bilinear form.

Theorem 1.1.4 Any projective automorphism is equal to the product of two
guadric polarities.

Proof Choose a basis it to represent the automorphism by a Jordan matrix
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J. Let Ji()\) be its block of sizé: with X at the diagonal. Let

0 0 0 1
0 0 1 0
Bp=1:
0 1 0 0
1 0 0 0
Then
0 0 0 A
0 0 A1
Cr(\) = BpJk(\) = | + :

0 A 0 O
A1 0 O

Observe that the matriceB;, and Cy(\) are symmetric. Thus each Jordan
block of J can be written as the product of symmetric matrices, hehisghe
product of two symmetric matrices. It follows from the definition of composi-
tion in the groupXPGL(FE) that the product of the matrices representing the
bilinear forms associated to correlations coincides with the matrix representing
the projective transformation equal to the composition of the correlatidns.

1.1.3 Polar quadrics
A (d —2)-polar of X = V(f) is a quadric, called thpolar quadricof X with

respect ta = [ao, . . ., ay]. Itis defined by the quadratic form
¢=Du-=(f)= > (}})a'd'f.
li|=d—2

Using equation (1.9), we obtain
2 igi

By (1.14), eaclu € X belongs to the polar quadri€,.—-(X). Also, by
Theoreml.1.1,

To(Poa—z(X)) = Py(Pra—z(X)) = Pra—1(X) = T, (X). (1.18)

This shows that the polar quadric is tangent to the hypersurface at thexpoint
Consider the ling = ab through two pointsz, b. Let ¢ : P! — P" be
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its parametric equation, i.e. a closed embedding with the image eqgdaltto
follows from (1.8) and (1.9) that

i(X,ab)q > s+ 1= b€ Ppui(X), k<s. (1.19)

For s = 0, the condition means that € X. Fors = 1, by Theorem1.1.1,
this condition implies thak, and hencé, belongs to the tangent plafig (X).
For s = 2, this condition implies thak € P,.—2(X). Since/l is tangent taX
ata, andP,.-2(X) is tangent taX ata, this is equivalent to thatbelongs to
Pa-2(X).

It follows from (1.19) thatu is a singular point ofX' of multiplicity > s + 1
if and only if P,a—x(X) = P" for & < s. In particular, the quadric polar
P,a—2(X) =P ifand only if a is a singular point ofX" of multiplicity > 3.

Definition 1.1.2 Aline is called arinflection tangento X at a pointa if
(X, 0)q > 2.

Proposition 1.1.5 Let/ be a line through a point. Then/ is an inflection
tangent taX ata if and only if it is contained in the intersection®f, (X') with
the polar quadricP,a-2 (X).

Note that the intersection of an irreducible quadric hypersurfaee V (q)
with its tangent hyperpland at a pointa € @ is a cone inH over the quadric
Q in the image of H in |E/[a]|.

Corollary 1.1.6 Assumen > 3. For anya € X, there exists an inflection
tangent line. The union of the inflection tangents containing the poisithe
coneT,(X) N Pa—2(X)in Ty (X).

Examplel.1.4 Assumae: is a singular point ofX. By Theoreml.1.1, this

is equivalent to thaP,.—. (X) = P". By (1.18), the polar quadri® is also
singular atz and therefore it must be a cone over its image under the projection
from a. The union of inflection tangents is equal@o

Examplel.1.5 Assume is a nonsingular point of an irreducible surfake

in P2, A tangent hyperplan&, (X) cuts out inX a curveC with a singular
pointa. If a is an ordinary double point af, there are two inflection tangents
corresponding to the two branches(®fta. The polar quadri€) is nonsingu-

lar ata. The tangent cone @' at the pointz is a cone over a quadri@ in P*.

If Q consists of two points, there are two inflection tangents corresponding to
the two branches af’ ata. If Q consists of one point (corresponding to non-
reduced hypersurface '), then we have one branch. The latter case happens
only if Q is singular at some poit+# a.
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1.1.4 The Hessian hypersurface

LetQ(a) be the polar quadric oX = V (f) with respect to some pointe P".
The symmetric matrix defining the corresponding quadratic form is equal to
the Hessian matribof second partial derivatives gf

2
He(f) = (azaj;- )m‘=07n’

evaluated at the point. The quadrial(a) is singular if and only if the deter-
minant of the matrix is equal to zero (the locus of singular points is equal to
the projectivization of the null-space of the matrix). The hypersurface

He(X) = V(det He(f))

describes the set of points € P™ such that the polar quadri€,.--(X) is
singular. It is called thélessian hypersurfacef X. Its degree is equal t@l —
2)(n + 1) unless it coincides wit™.

Proposition 1.1.7 The following is equivalent:

(i) He(X) =P,
(i) there exists a nonzero polynomi@lz, . . ., z,) such that

g(Oof,...,0nf) =0.

Proof Thisis a special case of a more general result abouktbebian!determinant
(also known as théunctional determinantof n + 1 polynomial functions
fo,- .., [n defined by

o)

J(fos--os fn) = det((at,

Suppose/(fo, ..., fn) = 0. Then the magf : C**! — C"*+! defined by the
functions fy, .. ., f,, is degenerate at each point (i#, is of rank< n + 1

at each pointr). Thus the closure of the image is a proper closed subset of
Cm*1. Hence there is an irreducible polynomial which vanishes identically on

the image.
Conversely, assume thatfo, ..., f») = 0 for some polynomial; which
we may assume to be irreducible. Then

9 99 ofi _ o - _
atl_Jz::Oazj(fO?afn)atz—07'l—0,,7’},

Sinceg is irreducible, its set of zeros is nonsingular on a Zariski oper/set
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Thus the vector
15) 15)
(5= (fo(@)s - Ja@))s- o 5= (fol@)s -, ful2))
20 Zn

is a nontrivial solution of the system of linear equations with ma(t%&(;c)),

J
wherex € U. Therefore, the determinant of this matrix must be equal to zero.
This implies that/(fo, ..., f») = 0onU, hence itis identically zero. O

Remarkl.1.2 It was claimed by O. Hesse that the vanishing of the Hessian
implies that the partial derivatives are linearly dependent. Unfortunately, his
attempted proof was wrong. The first counterexample was given by P. Gordan
and M. Noether in [280]. Consider the polynomial

[ = tot? + t3t + tytoty = 0.

Note that the partial derivatives
of _ . Of of

= L =2 L =tt
ots U oty Y oty O

are algebraically dependent. This implies that the Hessian is identically equal
to zero. We have

887]; = 2toty + t4tq, %‘{ = 2t1tg + t4tp.-
Suppose that a linear combination of the partials is equal to zero. Then
cotd + et 4 cototy + c3(2toty + tat1) + ca(2t1ts + tatg) = 0.
Collecting the terms in whichy, t3, 4, enter, we get
2c3tg =0, 2c4t1 =0, c3ty + cato =0.

This givescs = ¢4 = 0. Since the polynomial&l, 3, ¢t are linearly inde-
pendent, we also gef = ¢; = ¢ = 0.

The known cases when the assertion of Hesse is trué aré (anyn) and
n < 3 (anyd) (see [280], [410], [114]).

Recall that the set of singular quadricshifi is thediscriminant hypersur-
faceDy(n) in P*("+3)/2 defined by the equation

too tor .- ton
tor t1n ... tin

det . . . . =0.
tOn tln, cee tnn

By differentiating, we easily find that its singular points are defined by the
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determinants of. x n minors of the matrix. This shows that the singular locus
of D2(n) parameterizes quadrics defined by quadratic forms of ramk— 1

(or corank> 2). Abusing the terminology, we say that a quadric is of rank
the corresponding quadratic form is of this rank. Note that

dim Sing(Q) =corank@ — 1.

Assume that He()f # 0. Consider the rational map : |E| — |S%(EY)|
defined bya — P,a-:(X). Note thatP,s«—2(f) = 0 implies Pa—1(f) = 0
and hencé_""_, b;9; f(a) = 0 for all b. This shows that is a singular point
of X. Thusp is defined everywhere except maybe at singular poinfs .dbo
the mapp is regular if X is nonsingular, and the preimage of the discriminant
hypersurface is equal to the Hessiandf The preimage of the singular locus
Sing(D,(n)) is the subset of points € He( f) such that Sing(£-2 (X)) is of
positive dimension.

Here is another description of the Hessian hypersurface.

Proposition 1.1.8 The Hessian hypersurfatée(X) is the locus of singular
points of the first polars ok .

Proof Leta € He(X) and letb € Sing(R,«-2(X)). Then

Do(Daa-2(f)) = Daa-=(Dy(f)) = 0.

SinceDy(f) is of degreel — 1, this means thdl,(P,(X)) = P, i.e.,ais a
singular point ofP, (X).

Conversely, ifa € Sing(R(X)), thenD a—2(Dy(f)) = Dp(Dga-2(f)) =
0. This means thdi is a singular point of the polar quadric with respect:to
Hencea € He(X). O

Let us find the affine equation of the Hessian hypersurface. Applying the
Euler formula (1.13), we can write

tofoi = (d—1)0if —tifri — .. — tnfni,
thOf = df - tlalf T e T tnanf7

where f;; denote the second partial derivative. Multiplying the first row of
the Hessian determinant by and adding to it the linear combination of the
remaining rows taken with the coefficierits we get the following equality:

Of of ... Onf

d—1 fio fuu . fin

det(He(f)) = det

to

f7L0 fnl v fnn
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Repeating the same procedure but this time with the columns, we finally get

S of ... Onf

. ) o fun
det(He(f))=(dt21)2det 1:f f?l . fl_

0

(1.20)

8nf fnl v fnn

Let ¢(z1,. .., z,) be the dehomogenization gfwith respect td, i.e.,

t tn
Flto, ... ta) = tgqs(ti, )

0 0
We have
of _ a >’f d—2 .
7:( ; .. , = . [ :1...
8?% tO (bl(zlv 7Zn)a 8ti8tj tO ¢1J (21’ ’Z7l)7 [2W) 5 y 1y
where

_ 09 9%
¢7 872/ ¢z] 821(%3

Plugging these expressions thZ0), we obtain, that up to a nonzero constant
factor,

aq0(z)  ¢1(z) . da(2)

1
ta(n+1)(d_2) det(He((b)) ~ det ¢1(Z) (bll.(z) . . ¢1n(z)

On(2)  dn1(z) ... Dpn(2)
(1.21)
wherez = (21,...,2n),2; = ti/to, i1 =1,...,n.
Remarkl.1.3 If f(x,y) is a real polynomial in three variables, the value of
(1.21) at a point € R™ with [v] € V() multiplied by fl(a)2+f2z;)2+f3(a)2 is
equal to theGauss curvaturef X (R) at the pointz (see [242]).

1.1.5 Parabolic points

Let us see where He(intersectsX . We assume that He(JXis a hypersurface
of degree(n + 1)(d — 2) > 0. A glance at the expression (1.21) reveals the
following fact.

Proposition 1.1.9 Each singular point ofX belongs tdHe(X).
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Let us see now when a nonsingular painE X lies in its Hessian hyper-
surface He(X.

By Corollary1.1.6, the inflection tangents i, (X') sweep the intersection
of T,(X) with the polar quadric®,«—»(X). If a € He(X), then the polar
guadric is singular at some poitt

If n = 2, a singular quadric is the union of two lines, so this means that one
of the lines is an inflection tangent. A poiatof a plane curveX such that
there exists an inflection tangentais called arinflection pointof X.

If n > 2, the inflection tangents lines at a pointe X N He(X) sweep
a cone over a singular quadric B2 (or the wholeP™2 if the point is
singular). Such a point is calledparabolic pointof X . The closure of the set
of parabolic points is thearabolic hypersurfacen X (it could be the whole
X).

Theorem 1.1.10 Let X be a hypersurface of degrele> 2 in P™. If n = 2,
thenHe(X) N X consists of inflection points df. In particular, each nonsin-
gular curve of degree 3 has an inflection point, and the number of inflections
points is either infinite or less than or equal 3d(d — 2). If n > 2, then the
setX N He(X) consists of parabolic points. The parabolic hypersurfac&’in

is either the whol€eX or a subvariety of degreg: + 1)d(d — 2) in P".

Examplel.1.6 LetX be a surface of degrekin P3. If a is a parabolic point of

X, thenT,(X)N X is a singular curve whose singularityeais of multiplicity
higher than 3 or it has only one branch. In fact, otherwAShas at least two
distinct inflection tangent lines which cannot sweep a cone over a singular
quadric inP'. The converse is also true. For example, a nonsingular quadric
has no parabolic points, and all nonsingular points of a singular quadric are
parabolic.

A generalization of a quadratic cone islavelopable surface. It is a special
kind of aruled surfacewhich characterized by the condition that the tangent
plane does not change along a ruling. We will discuss these surfaces later in
Chapter 10. The Hessian surface of a developable surface contains this surface.
The residual surface of degréd — 8 is called thepro-Hessian surfaceAn
example of a developable surface is the quartic surface

(tots—tita)> —4(t; —tota) (t5—t1ts) = —6totitats+4tsts+4Atots+tgts—3t5ts = 0.

It is the surface swept out by the tangent lines of a rational normal curve of
degree 3. It is also thdiscriminant surfacef a binary cubic, i.e. the surface
parameterizing binary cubiegu? + 3a1u?v + 3aguv? 4+ asv® with a multiple



20 Polarity

root. The pro-Hessian of any quartic developable surface is the surface itself
[89].

Assume now thaiX is a curve. Let us see when it has infinitely many in-
flection points. Certainly, this happens wh&nhcontains a line component;
each of its point is an inflection point. It must be also an irreducible compo-
nent of He(X). The set of inflection points is a closed subsefXofSo, if X
has infinitely many inflection points, it must have an irreducible component
consisting of inflection points. Each such component is contained in He(X
Conversely, each common irreducible componentaind He(X) consists of
inflection points.

We will prove the converse in a little more general form taking care of not
necessary reduced curves.

Proposition 1.1.11 A polynomialf (tg, t1, t2) divides its Hessian polynomial
He(f) if and only if each of its multiple factors is a linear polynomial.

Proof Since each point on a non-reduced componedgf C V(f) is a sin-
gular point (i.e. all the first partials vanish), and each point on a line component
is an inflection point, we see that the condition is sufficientXorc He(f).
Suppose this happens and Itbe a reduced irreducible component of the
curve X which is contained in the Hessian. Take a nonsingular poift ahd
consider an affine equation &f with coordinategz, y). We may assume that
Or.. is included inOg , = K[[t]] such that: = ¢,y = t"¢, wheree(0) = 1.

Thus the equation aR looks like

flz,y) =y —2" +g(z,y), (1.22)

whereg(z, y) does not contain termgy, ¢ € C. Itis easy to see thd0,0) is
an inflection point if and only if- > 2 with the inflection tangenj = 0.
We use the affine equation of the Hessian (1.21), and obtain that the image

of
d
=l fhH fe
hMz,y)=det | fi  fii fi2
fo for fe2
in K[t]] is equal to
0 —rt" L 4 g1 1490
det | —rt™ 1 4+ ¢4 —r(r— 1)75“2 + 911 g12
1492 g12 922

Since every monomial entering inis divisible byy?, zy or 2%,i > r, we
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see thatg—g is divisible byt and% is divisible byt"—!. Also g, is divisible
by t"—!. This shows that

0 at™1 4+ ... 1+...
h(z,y)=det [at™t+... —r(r—Dt"2+... g2 |,
14+... g12 g22

where. . . denotes terms of higher degree iWe compute the determinant and
see that it is equal to(r — 1)¢"~2 + .... This means that its image i/[[¢]]

is not equal to zero, unless the equation of the curve is equaHd), i.e. the
curve is aline. O

In fact, we have proved more. We say that a nonsingular poift @fan in-
flection point oforderr — 2 and denote the order by orgdi if one can choose
an equation of the curve as in (1.22) with> 3. It follows from the previous
proof thatr — 2 is equal to the multiplicity (X, He), of the intersection of the
curve and its Hessian at the pointlt is clear that ordfl X = i(¢, X), — 2,
where/ is the inflection tangent line o atz. If X is nonsingular, we have

> (X, He), = > ordfl, X = 3d(d — 2). (1.23)

zeX zeX

1.1.6 The Steinerian hypersurface

Recall that the Hessian hypersurface of a hypersutkaee V (f) is the locus
of pointsa such that the polar quadri€,.-=(X) is singular. TheSteinerian
hypersurfacest(X) of X is the locus of singular points of the polar quadrics.
Thus

St(xX)= |J Sing(Ru-2(X)). (1.24)

acHe(X)

The proof of Propositionl.1.8shows that it can be equivalently defined as

St(X) = {a € P" : P,(X) is singular}. (1.25)
We also have
He(X)= (] Sing(R(X)). (1.26)
a€St(X)

Apointb = [bo, . ..,b,] € St(X) satisfies the equation
bo
He(f)(a)- | : | =0, (1.27)
by
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wherea € He(X). This equation defines a subvariety
HS(X) c P" x P" (1.28)

given byn + 1 equations of bidegre@l — 2,1). When the Steinerian map
is defined, it is just its graph. The projection to the second factor is a closed
subscheme dP™ with support at St(X. This gives a scheme-theoretical defi-
nition of the Steinerian hypersurface which we will accept from now on. It also
makes clear why St(Xis a hypersurface, not obvious from the definition. The
expected dimension of the image of the second projectien-sl.

The following argument confirms our expectation. It is known (see, for ex-
ample, [264]) that the locus of singular hypersurfaces of dediiee E| is a
hypersurface

Da(n) C [S(EY)|

of degreg(n + 1)(d — 1)" defined by thaliscriminantof a general degreé
homogeneous polynomial im+ 1 variables (thaliscriminant hypersurface).
Let L be the projective subspace |6?~!(E")| which consists of first polars
of X. Assume that no polaf,(X) is equal taP™. Then

St(X) = LND,(d—1).

So, unlesd. is contained irD,,(d — 1), we get a hypersurface. Moreover, we
obtain

deg(St(X)) = (n+ 1)(d — 2)". (1.29)

Assume that the quadri€,.—-(X) is of corank 1. Then it has a unique
singular pointh with the coordinate$b, . .., b,,] proportional to any column
or a row of the adjugate matrix adj(He))fevaluated at the point. Thus,
St(X) coincides with the image of the Hessian hypersurface under the rational
map

st: He(X) --» St(X), aw~ Sing(Ru-2(X)),
given by polynomials of degree(d — 2). We call it theSteinerian map. Of
course, it is not defined when all polar quadrics are of corank. Also, if

the first polar hypersurfacE, (X) has an isolated singular point for a general
pointa, we get a rational map

st!: St(X) --» He(X), a+r Sing(R(X)).

These maps are obviously inverse to each other. It is a difficult question to
determine the sets of indeterminacy points for both maps.
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Proposition 1.1.12 Let X be a reduced hypersurface. The Steinerian hyper-
surface ofX coincides withP™ if X has a singular point of multiplicity> 3.
The converse is true if we additionally assume tKahtas only isolated singu-
lar points.

Proof Assume thafX has a triple point. We may harmlessly assume that the
pointisp = [1,0, ..., 0]. Write the equation oX in the form

F=thgar(te, . tn) + 8  gapr1(te, s tn) +-Fgalts, ... tn) =0,

(1.30)
where the subscript indicates the degree of the polynomial. Since the multi-
plicity of p is greater than or equal &) we must havel — k£ > 3. Then a first
polar P,(X) has the equation

k

0 i
ao Y (k—i)tg " " ga- k+z+2a52t’f i gd Sk 0. (13Y)

=0

It is clear that the poinp is a singular point of?, (X) of multiplicity > d —
k—12>2.

Conversely, assume that all polars are singular. By Bertini's Theorem (see
[307], Theorem 17.16), the singular locus of a general polar is contained in
the base locus of the linear system of polars. The latter is equal to the singular
locus of X. By assumption, it consists of isolated points, hence we can find
a singular point ofX at which a general polar has a singular point. We may
assume that the singular pointis= [1,0,...,0] and (1.30) is the equation of
X. Then the first polaP, (X) is given by equation (1.31). The largest power of
to in this expression is at most The degree of the equationds- 1. Thus the
pointp is a singular point o, (X) if and only if £ < d — 3, or, equivalently,
if pis at least triple point ofX. O

Examplel.1.7 The assumption on the singular locus is essential. First, it is
easy to check thaX = V(f?), whereV (f) is a nonsingular hypersurface has
no points of multiplicity> 3 and its Steinerian coincides wilti'. An example

of a reduced hypersurfacé with the same property is a surface of degree 6 in
P3 given by the equation

Z# Z =0.

=0 1=0

Its singular locus is the cur\}[ea‘(z2 o tN V(ZZ o t7). Each of its points is
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a double point onX. Easy calculation shows that
3 3 3 3
Pa(X)=V(O_ Y aiti + (O > aits).
=0 =0 =0 =0
and

VO nvO )NV () ait?) C Sing(B(X)).
=0 =0 1=0

By Propositionl.1.3, Sing(X] is contained in St(X. Since the same is true
for He(X), we obtain the following.

Proposition 1.1.13 The intersectiorHe(X) N St(X) contains the singular
locus ofX.

One can assign one more variety to a hypersurfiice V(f). This is the
Cayleyan variety. It is defined as the image Cay@Xthe rational map

HS(X) --» G1(P"), (a,b) — ab,

whereG,.(P™) denotes the Grassmannianreflimensional subspaces .
In the sequel we will also use the notatiéf{r + 1, E) = G,(|E|) for the
variety of linearr + 1-dimensional subspaces of a linear sp&terhe map
is not defined at the intersection of the diagonal with H%(We know that
HS(a, a) = Omeans thaP,.-: (X) = 0, and the latter means thats a singu-
lar point of X. Thus the map is a regular map for a nonsingular hypersurface
X.

Note that in the case = 2, the Cayleyan variety is a plane curve in the dual
plane, theCayleyan curvef X.

Proposition 1.1.14 Let X be a general hypersurface of degée> 3. Then

Pd=2 (" Y ifd>3
deg Cay(X) = {lzzi( n+1) (nil) (zfl) . 3
32 (T () if d =3,
where the degree is considered with respect to thelkdr embedding of the
Grassmanniart; (P™).

Proof Since St(X) # P", the correspondence HS(Xs a complete inter-
section ofn + 1 hypersurfaces iP" x P of bidegree(d — 2,1). Since
a € Sing(R,(X)) implies thate € Sing(X), the intersection of HSX) with
the diagonal is empty. Consider the regular map

r: HS(X) — G1(P"), (a,b) — ab. (1.32)

It is given by the linear system of divisors of type 1) onP™ x P" restricted
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to HS(X). The genericity assumption implies that this map is of degree 1 onto
the image ifd > 3 and of degree 2 ifi = 3 (in this case the map factors
through the involution oP™ x P™ that switches the factors).

It is known that the set of lines intersecting a codimension 2 linear sub-
spaceA is a hyperplane section of the Grassmanr@arfP") in its Plicker
embedding. Writd" = |E| andA = |L|. Letw = v; A ... A v, for some
basis(vy, . ..,v,—1) of L. The locus of pairs of pointg:, b) = ([w1], [w2]) In
P x P such that the linab intersects\ is given by the equatiom; Aws Aw =
0. This is a hypersurface of bidegrék 1) in P x P. This shows that the map
(1.32) is given by a linear system of divisors of tyde1l). Its degree (or twice
of the degree) is equal to the intersectiod — 2)h; + ho)" 1 (hy + ho)" 7L,
whereh, h, are the natural generators BF (P" x P", Z). We have

((d = 2)hy + ha)" T (hy + hy)" ! =

(Til (njl)(d 2 h1hn+l 7 i n— 1 hn 1— jhj)
=0 7=0

=SS =2 (T ().

For example, if» = 2, d > 3, we obtain a classical result
deg Cay(X) = 3(d — 2) + 3(d — 2)* = 3(d — 2)(d — 1),
anddeg Cay(X) = 3if d = 3.

Remarkl.1.4 The homogeneous forms defining the Hessian and Steinerian
hypersurfaces of ( f) are examples afovariantsof f. We already discussed
them in the case = 1. The form defining the Cayleyan of a plane curve is an
example of aontravariantof f.

1.1.7 The Jacobian hypersurface

In the previous sections we discussed some natural varieties attached to the lin-
ear system of first polars of a hypersurface. We can extend these constructions
to arbitraryn-dimensional linear systems of hypersurface®ih= |E|. We
assume that the linear system has no fixed components, i.e. its general member
is an irreducible hypersurface of some degietet . ¢ S?(EY) be a linear
subspace of dimensiom+ 1 and|L| be the corresponding linear system of
hypersurfaces of degrek Note that, in the case of linear system of polars of a
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hypersurfaceX of degreei+ 1, the linear subspade can be canonically iden-
tified with £ and the inclusionE| C |S¢(E")| corresponds to the polarization
mapa — P,(X).

LetDg4(n) C |SY(EY)| be the discriminant hypersurface. The intersection

D(IZ]) = [L] N Da(n)

is called thediscriminant hypersurfacef |L|. We assume that it is not equal
to P, i.e. not all members df_| are singular. Let

D(|L|) = {(z, D) € P" x |L| : = € Sing(D)}

with two projectiong : D — D(|L|) andq : D — |L|. We define thddacobian
hypersurfacef | L| as

Jac(|L|) =q(D(|L])).

It parameterizes singular points of singular membersZof Again, it may
coincide with the wholé™. In the case of polar linear systems, the discrim-
inant hypersurface is equal to the Steinerian hypersurface, and the Jacobian
hypersurface is equal to the Hessian hypersurface.

The Steinerian hypersurfacgt(|L|) is defined as the locus of pointsc P™
such that there exists € P" such thatr € Npe || Pon—1 (D). Sincedim L =
n+ 1, the intersection is empty, unless there exi3tsuch thatP,.-: (D) = 0.
Thus P,» (D) = 0 anda € Sing(D), hencea € Jac(|L|)andD € D(|L]).
Conversely, ifa € Jac(|L|), thempe | Pyr-1(D) # () and it is contained in
St(|L|). By duality (1.12),

z€ () Por(D)sae ) PuD).
De|L| De|L|

Thus the Jacobian hypersurface is equal to the locus of points which belong to
the intersection of the first polars of divisors|ib| with respect to some point
z € St(X). Let

HS(|L|) ={(a,b) € He(|L|) x St(|L|) :a € (1) Py(D)}
De|L|

= {(a,b) € He(|L|)x St(|L|) :b € (] Poa-1(D)}.
De|L|

Itis clear that HS(|L|)c P x P is a complete intersection af+ 1 divisors
of type(d — 1,1). In particular,

whs(|z)) = Pri(Op» ((d — 2)(n + 1))). (1.33)

One expects that, for a general paint St(|L|), there exists a uniquee
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Jac(]L|)and a uniqueéD € D(]L|) as above. In this case, the correspondence
HS(|L|) defines a birational isomorphism between the Jacobian and Steinerian
hypersurface. Also, it is clear that He(|L|) St(|L|) if d = 2.

Assume thaiZ| has no base points. Then HS(|Idges not intersect the
diagonal ofP™ x P™. This defines a map

HS(|L|) — G1(P™), (a,b)— ab.

Its image Cay(|L|}s called theCayleyan varietyf |L|.

Aline ¢ € Cay(|L])is called aReye lineof | L|. It follows from the defini-
tions that a Reye line is characterized by the property that it contains a point
such that there is a hyperpland ] of hypersurfaces tangentfat this point.

For example, il = 2 this is equivalent to the property théts contained is a
linear subsystem df_| of codimension 2 (instead of expected codimension 3).

The proof of Propositiorl.1.14 applies to our more general situation to
give the degree of Cay(|Lfpr a generah-dimensional linear systend.| of
hypersurfaces of degrek

Y@= (D) ifd>2,
deg Cay(X) = { e e (A (1.34)
3 i ( jl) (1—11) if d=2.
Let f = (fo,...,fn) be a basis ofL. Choose coordinates if" to iden-

tify S4(E") with the polynomial ringClto, . .., t,]. A well-known fact from
the complex analysis asserts that Jac(j&|given by the determinant of the
Jacobian matrix

Oofo Oifo ... Onfo

Ooft Oift ... Onh
J(f) = : : : :

a()fn alfn e 8nfn

In particular, we expect that
degJac(|L|) = (n+ 1)(d —1).

If @ € Jac(|L]), then a non-zero vector in the null-spacé @f) defines a point

x such thatP, (fo)(a) = ... = Py(fn)(a) = 0. Equivalently,
Pou-i(fo)(x) = ... = Puu-1(fn)(x) = 0.

This shows that St(| L|is equal to the projectivization of the union of the null-
spaces Null(Jac((f1))), a € C™**. Also, a nonzero vector in the null space of

the transpose matrix/( f) defines a hypersurface Y| L|) with singularity at
the pointa.
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Let Jac(|L|} be the open subset of points where the corank of the jacobian
matrix is equal to 1. We assume that it is a dense subset of Jac(|L|). Then,
taking the right and the left kernels of the Jacobian matrix, defines two maps

Jac(|L[ — D(|L]), Jac(|L|f — St(|L]).

Explicitly, the maps are defined by the nonzero rows (resp. columns) of the
adjugate matrix adj(He()f.

Letpz : P™ --» |LY| be the rational map defined by the linear systéin
Under some assumptions of generality which we do not want to spell out, one
can identify Jac(|L|with the ramification divisor of the map ari?(|L|) with
the dual hypersurface of the branch divisor.

Let us now define a new variety attached ta-dimensional linear system
in P™. Consider the inclusion map — S¢(EV) and let

L— SYE)Y, fwf,

be the restriction of the total polarization map (1.2YtdNow we can consider
|L| as an-dimensional linear systepd| on |E|? of divisors of type(1, ..., 1).
Let

PB(IL))= () Dc|E

De|L]|

be the base scheme Eﬂ We call it thepolar base locusf |L|. It is equal to
the complete intersection af+ 1 effective divisors of typ€l, ..., 1). By the
adjunction formula,

wes(| L)) = Ops(|L|)-

If smooth, PB(|L|)is aCalabi-Yau varietyf dimension(d — 1)n — 1.

For anyf € L, let N(f) be the set of points = ([v™V],..., [v(?]) € |E|*
such that
f(v(l), co oD g Ut ,v(d)) =0
foreveryj =1,...,dandv € E. Since

FW, w07 0 00D ) = Dy o1 @ (Do (),
This can be also expressed in the form
éﬁ(v(l), U U ,v(d)) =0,j=0,...,n. (1.35)

Choose coordinates, . .., u, in L and coordinateg, . .., t, in E. Letz be
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the image of a basig of L in (EV)?. Then PB(|L|)is a subvariety of P")¢
given by a system aof multilinear equations

o@D, Dy = = f,W, ... D) =0,

wheret(?) = (t(J) L)), 5 =1,...,d. For anyX = (Xo,...,\n), Set
fA - Zz O)‘ fz

Proposition 1.1.15 The following is equivalent:

(i) « € PB(|L])is a singular point,
(i) = € N(fy)for some\ # 0.

Proof The variety PB(|L|)is smooth at a point if and only if the rank of
thed(n + 1) x (n + 1)-size matrix

0
k
( ij) (8t j)( ))i,k:O,...,n,jzl,...,d
is equal ton + 1. Let f, = ugfo + -+ + unfn, Whereug, ..., u, are un-
knowns. Then the nullspace of the matrix is equal to the space of solutions
u = (Ag,...,\,) Of the system of linear equations

Ofu Ofu 0fu

——(z)=...= —(x =0. 1.36

P @) u, @ = 5o =0 (1.36)

For a fixed), in terminology of [264], p. 445, the system has a solutioin
|B|?if fr= > \; f; is adegenerate multilinear form. By Proposition 1.1 from
Chapter 14 of loc.cit.f, is degenerate if and onlij(fA) is non-empty. This
proves the assertion. O

For any non-empty subsétof {1,...,d}, let A; be the subset of points
x € |E|? with equal projections té-th factors withi € I. Let Ay be the union
of Ay with #1 = k. The setA; is denoted byA (the small diagonal).

Observe that PB(|L|) =HS(|L|)if d = 2 and PB(|L|)N A4—; consists of
d copies isomorphic to HS(|LJj d > 2.

Definition 1.1.3 A n-dimensional linear systeni.| c [S¢(EY)| is called
regularif PB(|L|) is smooth at each point df,;_;.

Proposition 1.1.16 AssumeL]| is regular. Then

(i) |L| has no base points,
(i) D(|L]) is smooth.
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Proof (i) Assume that: = ([vg], ..., [vo]) € PB(]L|)N A. Consider the lin-
ear mapL — E defined by evaluating at a point(vg, . .., vg, U, Vg, - - ., Vg,
wherev € E. This map factors through a linear maép— E/[vo], and hence
has a nonzerd in its kernel. This implies that € N(f), and hence: is a
singular point of PB(|L|).

(ii) In coordinates, the variet(|L|) is a subvariety of typél,d — 1) of
P x P™ given by the equations

n 6fk_ _ n 8fk B
Mote T Z
k=0
The tangent space at a poifid], [a]) is given by the system of + 1 linear

equations irkn + 2 variables( Xy, ..., X,,, Yy,...,Ys)

- 8fk - asz )
pad atl (G)Xk + JXZ% A (a)Y] = 07 1= 0’ co,n, (137)

where fx = Y 7_o M fi- Suppose([A],[a]) is a singular point. Then the
equations are linearly dependent. Thus there exists a nonzero vector
(o, - - ., ) such that

n

Zazafk Dv(fk)(a):fk(a,...,a,v):o,k:0,...,n

i

and

S 1 B ofx. .

i alatlat_] (a) - Dv(aim)(a) - DadiZU(Wj) = O7 ] = 0, ey,
where f\ = 3" Aw /. The first equation implies that = ([a], ..., [a], [ )

belongs to PB(|L|). Since € Sing(f), we haveD, .- 1(‘9f ) =0, j =
0,...,n. By (1.35), this and the second equation now |mply that N( )
By Proposmonl 1.15, PB(|L|)is singular atz, contradicting the assumptio
D
Corollary 1.1.17 SupposeéL| is regular. Then the projection

g: D(|Z]) = D(/L])
is a resolution of singularities.

Consider the projectiop : D(|L|) — Jac(|L|)(D, z) — . Its fibres are
linear spaces of divisors ifi| singular at the poinfa]. Conversely, suppose
D(|L]) contains a linear subspace, in particular, a line. Then, by Bertini’s The-
orem all singular divisors parameterized by the line have a common singular
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point. This implies that the morphisphas positive dimensional fibres. This
simple observation gives the following.

Proposition 1.1.18 SupposeD(|L|) does not contain lines. Thed(|L|) is
smooth if and only ifJac(|L|)is smooth. MoreovelHS(|L|) = St(|L|) =
Jac(|L|).

Remarkl.1.5 We will prove later in Examplg.2.1that the tangent space of
the discriminant hypersurfad®;(n) at a point corresponding to a hypersurface

X = V(f) with only one ordinary double point is naturally isomorphic to

the linear space of homogeneous forms of degreanishing at the point
moduloCJ. This implies thaD(|L|) is nonsingular at a point corresponding to

a hypersurface with one ordinary double point unless this point is a base point
of | L|. If |L| has no base points, the singular point®¢fL|) are of two sorts:
either they correspond to divisors with worse singularities than one ordinary
double point, or the linear spadé| is tangent toD,(n) at its nonsingular
point.

Consider the natural action of the symmetric graypon (P")<. It leaves
PB(|L|) invarian. The quotient variety

Rey(|L[) =PB(|L])/&4

is called theReye varietyof |L|. If d > 2 andn > 1, the Reye variety is
singular.

Examplel.1.8 Assumel = 2. Then PB(|L|) =HS(|L|) and Jac(|L|) =
St(|L|). Moreover, Rey(|L|¥ Cay(|L|). We have

degJac(|L|) = degD(|L)) =n+1, degCay(|L])=> (")

=1

The linear system is regular if and only if PB(|Li§) smooth. This coincides
with the notion of regularity of a web of quadricsIii discussed in [146].

A Reye line/ is contained in a codimension 2 subspadg) of |L|, and
is characterized by this condition. The linear subsystgif) of dimension
n — 2 containg/ in its base locus. The residual component is a curve of degree
27~! — 1 which intersectg at two points. The points are the two ramification
points of the penciQ N ¢, @ € |L|. The two singular points of the base locus
of A(¢) define two singular points of the intersectidriA) N D(|L|). Thus
A(¥) is a codimension 2 subspace|df which is tangent to the determinantal
hypersurface at two points.

If |L|is regularanc = 3, PB(|L|)is a K3 surface, and its quotient Rey(|L|)
is an Enriques surface. The Cayley variety is a congruence (i.e. a surface) of
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lines inG1(P?) of order 7 and class 3 (this means that there are 7 Reye lines
through a general point iB* and there 3 Reye lines in a general plane). The
Reye lines are bitangents of the quartic surfa¢d.|). The quartic surface has

10 nodes and is calledayley quartic symmetroidVe refer for the details to
[146]. TheReye congruenacef lines is also discussed in [295].

1.2 The dual hypersurface
1.2.1 The polar map

Let X = V(f) for somef € S4(EY). We assume that it is not a cone. The
polarisation map

E — STYEY), v Dy(f),

allows us to identify| E| with ann-dimensional linear system of hypersurfaces
of degreal — 1. This linear system defines a rational map

px : |E] - P(E)

. It follows from (1.12) that the map is given by assigning to a paitite linear
polar P,.-1 (X). We call the map the polar mapdefined by the hypersurface
X. In coordinates, the polar map is given by

af of
[t07...7tn] [d [%7...7%].
Recall that a hyperplanH, = V(3" a;&;) in the dual projective spad@™)"
is the pointa = [ao, . .., a,] € P". The preimage of the hyperplaig, under

px isthe polarP, (f) = V(> a; 9L ).

If X is nonsingular, the polar map is a regular map given by polynomials of
degreed — 1. Since it is a composition of the Veronese map and a projection,
it is a finite map of degre&l — 1)™.

Proposition 1.2.1 AssumeX is nonsingular. The ramification divisor of the
polar map is equal tdle(X).

Proof Note that, for any finite map : X — Y of nonsingular varieties, the
ramification divisor Ram(¢is defined locally by the determinant of the linear
map of locally free sheaves'(2},) — QL. The image of Ram(gin Y is
called thebranch divisor. Both of the divisors may be nonreduced. We have
the Hurwitz formula

Kx = ¢*(Ky) + Ram(¢). (1.38)
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The map¢ is étale outside Ram(¢), i.e., for any pointe X the homomor-
phism of local ringOy 4(,y — Ox . defines an isomorphism of their formal
completions. In particular, the preimage!(Z) of a nonsingular subvariety
Z C Y is nonsingular outside the support of Ram(¢). Applying this to the
polar map we see that the singular pointdh{X) = p)_(l(Ha) are contained

in the ramification locus Ramfyp) of the polar map. On the other hand, we
know that the set of singular points of first polars is the HessiaiXHeThis
shows that He(X c Ram(px). Applying the Hurwitz formula for the canon-
ical sheaf

Ken = p (Kpny) + Ram(py).

we obtain thatleg(Ram(px)) = (n + 1)(d — 2) = deg(He(X)). This shows
that He(X) = Ram(px). O

What is the branch divisor? One can show that the preimage of a hyperplane
H, in P(F) corresponding to a point € |E| is singular if and only if its in-
tersection with the branch divisor is not transversal. This means that the dual
hypersurface of the branch divisor is the Steinerian hypersurface. Equivalently,
the branch divisor is the dual of the Steinerian hypersurface. hy does not in-
tersect tran tangent to the branch locus of the map. The preimafdg isfthe
polar hypersurfac®, (X). Thus the set of hyperplanes tangent to the branch
divisor is equal to the Steinerian St{X

1.2.2 Dual varieties

Recall that thedual variety XV of a subvarietyX in P* = |E| is the closure
in the dual projective spag®”)¥ = |EV| of the locus of hyperplanes if*
which are tangent t& at some nonsingular point of .

The dual variety of a hypersurfacé = V(f) is the image ofX under the
rational map given by the first polars. In fact, the pditf(x),. .., 0, f(x)]
in (P™)V is the hyperplan& (3", 9; f(x)t;) in P™ which is tangent toX at
the pointz.

The following result is called thReflexivity theorem. One can find its proof
in many modern text-books (e.®64], [307], [611], [661]).

Theorem 1.2.2(Reflexivity Theorem)
(XV)Y =X.

It follows from any proof in loc. cit. that, for any nonsingular poinge XV
and any nonsingular point € X,

T.(X) C H, = T,(X") C H,.
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Here we continue to identify a poiatin |E| with a hyperplaned,, in P(E).
The set of all hyperplanes i)Y containing the linear subspatg(X") is
the dual linear space df,(X") in P". Thus the fibre of theluality map(or
Gauss map)

FiX™ = XY 2 TH(X), (1.39)

over a nonsingular point € XV is an open subset of the projective subspace
in P equal to the dual of the tangent spatg X ). Here and late’X ™ de-
notes the set of nonsingular points of a variéfy In particular, if XV is a
hypersurface, the dual spaceTf(X ") must be a point, and hence the map

is birational.

Let us apply this to the case when is a nonsingular hypersurface. The
polar map is a finite map, hence the dual of a nonsingular hypersurface is a
hypersurface. The duality map is a birational morphism

pX|X :X—>Xv.

The degree of the dual hypersurfa&e’ (if it is a hypersurface) is called
the classof X. For example, the class of any plane curve of degsee is
well-defined.

Examplel.2.1 LetD4(n) be the discriminant hypersurface|isi(EV)|. We
would like to describe explicitly the tangent hyperplan®gfr) at its nonsin-
gular point. Let

Da(n) = {(X,z) € |Opn(d)| x P" : z € Sing(X)}.
Let us see thab,(n) is nonsingular and the projection to the first factor
7 : Dg(n) — Dg(n) (1.40)

is a resolution of singularities. In particularjs an isomorphism over the open
setD,(n)" of nonsingular points oD 4(n).

The fact thatD,(n) is nonsingular follows easily from considering the pro-
jection tolP™. For any pointz € P" the fibre of the projection is the projective
space of hypersurfaces which have a singular point(#tis amounts ta + 1
linear conditions on the coefficients). Thils(n) is a projective bundle over
P and hence is nonsingular.

Let us see where is an isomorphism. Letl;, [i| = d, be the projective
coordinates inOp- (d)| = |S(E")| corresponding to the coefficients of a
hypersurface of degre@ and lett, ..., ¢, be projective coordinates ™.
Thenﬁd(n) is given byn + 1 bihomogeneous equations of bideg(egi —1):
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D iAT =0, s=0,...,m, (1.41)
li|=d

Heree, is thes-th unit vector inZ»*1.

A point (X, [vo]) = (V(f),[vo]) € |Opn(d)| x P belongs toDy(n) if
and only if, replacingd4; with the coefficient off at t’ and¢; with the i-th
coefficient ofvy, we get the identities.

We identify the tangent space [§f¢(E")| x | E| at a point( X, [vo]) with the
spaceS?(EY)/Cf @ E/Cuvy. In coordinates, a vector in the tangent space is a
pair (g, [v]), whereg =3, ait',v = (zo,...,,) are considered modulo
pairs(Af, pvo). Differentiating equations (1.41), we see that the tangent space
is defined by thén + 1) x ("})-matrix

- i—eg . . . ei—eg—eq . . . ei—eg—e
10T Zm:dloloAlx Zm:d“ﬂnAlx n

. i—e T i—en—e .. i—en—e
T L Z‘i‘:dznzoAix n—€ Zm:dznlnAix n=en

wherezi=¢: = 0 if i — e, iS not a non-negative vector. It is easy to interpret
solutions of these equations as pdiysv) from above such that

V(g)(vo) + He(f)(vo) - v =0. (1.42)

Since [v] is a singular point oft’(f), V(f)([ve]) = 0. Also He(/)(vo) -
vg = 0, as follows from Theorert.1.10. This confirms that paifs f, uvg) are
always solutions. The tangent mégp at the pointV'(f), [vo]) is given by the
projection(g, v) — g, where(g,v) is a solution of {.42). Its kernel consists
of the pairg( A f, v) modulo pairg A f, pvg). For such pairs the equations (1.42)
give

He(f)(vo) -v =0. (1.43)

We may assume that = (1,0,...,0). Since[v] is a singular point of/( f),
we can writef = tg‘Qfg(tl, ...y tn) + .... Computing the Hessian matrix at
the pointy, we see that it is equal to

0o ... ... 0
0 ail AT
, (1.44)
0 anpl1 ... Qpp
where fa(t1,...,tn) = Zogi_’jgn a;;t;t;. Thus a solution of (1.43), not pro-

portional tov, exists if and only ifdet He( f;) = 0. By definition, this means
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that the singular point oK™ at z is not an ordinary double point. Thus we ob-
tain that the projection map (1.40) is an isomorphism over the open subset of
D4(n) representing hypersurfaces with an isolated ordinary singularity.

We can also find the description of the tangent spadegf:) at its point
X = V(f) representing a hypersurface with a unique ordinary singular point
z. It follows from calculation of the Hessian matrix in (1.44), that its corank at
the ordinary singular point is equal to 1. Since the matrix is symmetric, the dot-
product of a vector in its nullspace is orthogonal to the column of the matrix.
We know that He( f(vo) - vo = 0. Thus the dot-produc¥(g)(uvo) - vo is equal
to zero. By Euler’s formula, we obtaif(vy) = 0. The converse is also true.
This proves that

T(Da(n))x = {g € SUE")/Cf : g(z) = 0}. (1.45)

Now we are ready to compute the dual varietypf(n). The condition
g(b) = 0, where Sing(X = {b} is equivalenttdD,.(f) = 0. Thus the tangent
hyperplane, considered as a point in the dual spaéer)| = [(SY(EY))V|
corresponds to the envelopé = (3>°7_, b,0;)?. The set of such envelopes is
the Veronese variety;, the image of E| under the Veronese magp : |E| —
|SY(E)|. Thus

Dd(’l’l,)v = I/d([Pm), (146)

Of course, it is predictable. Recall that the Veronese variety is embedded
naturally in|Op- (d)|. Its hyperplane section can be identified with a hyper-
surface of degred in P". A tangent hyperplane is a hypersurface with a sin-
gular point, i.e. a point ifD4(n). Thus the dual oV} is isomorphic taD4(n),
and hence, by duality, the dual Bf;(n) is isomorphic tav.

Examplel.2.2 LetQ = V(q) be a nonsingular quadric IF*. Let A = (a;;)
be a symmetric matrix defining. The tangent hyperplane @ at a point
[x] € P™ is the hyperplane

n n
t() E aojl’j+"’+tn E anjxj :0
7=0 7=0

Thus the vector of coordinatgs= (yo, .. ., y,) of the tangent hyperplane is
equal to the vectod - z. SinceA is invertible, we can writee = A1 - y. We
have

O=z-A-z=(qy- A - A- (At y=y-A - y=0.

Here we treat: or y as a row-matrix or as a column-matrix in order the matrix
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multiplication makes sense. Sinde! = det(A)'adj(A), we obtain that the
dual variety of@ is also a quadric given by the adjugate matrix adj(A).

The description of the tangent space of the discriminant hypersurface from
Examplel.2.1has the following nice application (see also Rentatk5).

Proposition 1.2.3 Let X be a hypersurface of degrekin P". Suppose: is
a nonsingular point of the Steinerian hypersurf&€X). ThenSing(R, (X))
consists of an ordinary singular poihtand

T, (St(X)) = Pya-1(X).

1.2.3 Plicker formulas

Let X = V(f) be a nonsingular irreducible hypersurface which is not a cone.
Fix n — 1 general pointa, . .., a,_1 in P™. Consider the intersection

XNP,(X)n...NP,

an—1

(X)={beP":ay,...,an_1 € TH(X)}.

The set of hyperplanes through a general set-efl points is a line in the dual
space. This shows that

deg XV =#X NP, (X)N... P, (X)=d(d—1)""". (1.47)

The computation does not apply to singursince all polarsP, (X) pass
through singular points ok . In the case wheX has only isolated singular-
ities, the intersection of, — 1 polars with X contains singular points which
correspond to hyperplanes which we excluded from the definition of the dual
hypersurface. So we get the following formula

deg(XY) =d(d—1)"""—= > i(X,Pa,(X),..., Pa,_,(X))s (1.48)

z€Sing(X)
To state an explicit formula we need some definition. bet (¢1, ..., ¢x)
be a set of polynomials i€[z1, . . ., z,,]. We assume that the holomorphic map

C" — CF defined by these polynomials has an isolated critical point at the
origin. Let.J(¢) be the jacobian matrix. The idedl(¢) in the ring of formal

power serie€[[z1, . .., z,]] generated by the maximal minors of the Jacobian
matrix is called theJacobian ideabf ¢. The number

(@) = dimCf[z1, ..., zn]]/ T (¢)

is called theMilnor numberof ¢. Passing to affine coordinates, this definition
easily extends to the definition of the Milnor numherX, z) of an isolated
singularity of a complete intersection subvarigfyin P".
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We will need the following result of & Diing Tiang [400], Theorem 3.7.1.

Lemmal.2.4 LetZ be acomplete intersection @& defined by polynomials
@1, ..., ¢ With isolated singularity at the origin. Let; = V(¢1, ..., ¢r—1).
Then

/’L(qsh o '7¢k71) + ,U/(¢1, .. '7¢k717¢k)
= dlmCHZl, . '1ZTLH/(¢17 o '7¢k717\7(¢17~ . '7¢k))'

Now we can state and prove tRéicker-Teissier formuléor a hypersurface
with isolated singularities:

Theorem 1.2.5 Let X be a hypersurface if?" of degreed. SupposeX has
only isolated singularities. For any point€ Sing(X), let

e(X,z) = (X, 2) + u(H N X, z),
whereH is a general hyperplane section &f containingz. Then

deg XV =d(d—1)""— Y e(X,a).
z€Sing(X)

Proof We have to show that(X, z) = i(X, Py, (X),..., Pa, _,(X)).. We
may assume that = [1,0,...,0] and choose affine coordinates with =
t;/to. Let f(to,... t,) = tgg(zh ..., zn). Easy calculations employing the
Chain Rule, give the formula for the dehomogenized partial derivatives

_40f dg
diz 1
dg + E 821-2“

Yo B,
_40f Oy
d
= =1,...,n.
%o ati 821'72 ’ o

Let H = V(h) be a general hyperplane spannedsby- 1 general points
ai,...,a,_1,andh : C* — C be the projection defined by the linear function
h = Z ;2. Let

F:C"—=C?% z=(z1,...,22) — (9(2),h(2)).

Consider the Jacobian determinant of the two functigh#)

2 o
Jo.h) = )
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The ideal(g, J(g, h)) defines the set of critical points of the restriction of the
mapF to X \ V(ty). We have

9g 9g
(97 J(g7h)) = (gvaiaizj - ajaizi)lgi<j§n»

The points(0, ...,0,«;,0,...,0,—a;,0,...,0) span the hyperplan®. We
may assume that these points are our points..,a,_1. So, we see that
(g, J(g, h)) coincides with the ideal in the completion of local ri6g- ., gen-
erated byf and the polard,, (f). By definition of the index of intersection,
we have

(X, Py (X), -y Pa,_y (X))a = (g, h).

» 5 Gn—1

It remains to apply Lemmé.2.4, whereZ = V(g) andZ; = V(g) NV (h).
O

Examplel.2.3 An isolated singular point of a hypersurfaceX in P” is

called anA,-singularity (or a singular point of typel;,) if the formal comple-
tion of Ox , is isomorphic taC|zy, . . ., 2, ]} /(2T + 25+ .. 4 22). If k=1,

it is an ordinary quadratic singularity (orreode), ifk = 2, it is anordinary
cusp. We get

wX,z) =k, w(XNH,z) =1.

This gives the Ricker formula for hypersurfaces withsingularities of type
Akyy oy Ag,

deg XV =d(d—1)""" = (k1 +1) —... — (ks + 1). (1.49)

In particularly, whenX is a plane curvé&’ with § nodes and: ordinary cusps,
we get a familiaPlicker formula

deg C¥ = d(d — 1) — 25 — 3k. (1.50)

Note that, in case of plane curveg,H N X, ) is always equal to mujtX — 1,
where mult X is the multiplicity of X atx. This gives the Ricker formula for
plane curves with arbitrary singularities

degC¥ =d(d—1)— Y (u(X,z)+mult,X —1). (1.51)
z€Sing(X)

Note that the dual curvé’” of a nonsingular curv€’ of degreed > 2 is
always singular. This follows from the formula for the genus of a nonsingular
plane curve and the fact that andC" are birationally isomorphic. The po-
lar mapC — CV is equal to the normalization map. A singular point(of
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corresponds to a line which is either tangen€tat several points, or is an in-
flection tangent. We skip a local computation which shows that a line which is
an inflection tangent at one point with oréfl 1 (anhonest inflection tangent)
gives an ordinary cusp @V and a line which is tangent at two points which
are not inflection points (honest bitangent) gives a node. Thus we obtain that
the numbe® of nodes ofC" is equal to the number of honest bitangents of
C and the numbet of ordinary cusps ofV is equal to the number of honest
inflection tangents t@'".

Assume thatC' is nonsingular and’¥ has no other singular points except
ordinary nodes and cusps. We know that the number of inflection points is
equal to3d(d — 2). Applying Plicker formula (1.50) t&>", we get that

5= %(d(d—1)(d(d—1)—1)—d—9d(d—2)) = %d(d—Q)(dQ—Q). (1.52)

This is the (expected) number of bitangents of a nonsingular plane curve. For
example, we expect that a nonsingular plane quartic has 28 bitangents.

We refer for discussions of &tker formulas to many modern text-books
(e.g. [241], [253], [295], [264]). A proof of Ricker-Teissiere formula can be
found in [607]. A generalization of the Btker-Teissier formula to complete
intersections in projective space was given by S. Kleiman [372]

1.3 Polar s-hedra

1.3.1 Apolar schemes

We continue to usé’ to denote a complex vector space of dimensioh 1.
Consider the polarization pairing (1.2)

SUEY) x SH(E) — STHEY),  (f,¥) = Dy(f).

Definition 1.3.1 ¢ € S*(E) is calledapolarto f € S¢(EY) if Dy(f) = 0.
We extend this definition to hypersurfaces in the obvious way.

Lemma 1.3.1 Foranywy € S¥(E),v’ € S™(E)andf € SY(EY),
Dy (Dy(f)) = Dy (f)-

Proof By linearity and induction on the degree, it suffices to verify the asser-
tions in the case whet = 9; andy’ = 9;. In this case they are obvious.[]

Corollary 1.3.2 Let f € S4(EV). Let AP, (f) be the subspace ¢f*(E)
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spanned by forms of degréeapolar to f. Then

AP(f) =P AP:(f)
k=0
is a homogeneous ideal in the symmetric algefita’).

Definition 1.3.2 The quotient ring
Ay = S(E)/AP(f)
is called theapolar ringof f.

The ring Ay inherits the grading of (E). Since any polynomiab € S™(E)
with r > d is apolar tof, we see thatd; is annihilated by the ideaﬁfrl =
(Boy ..., 0p)0HL. Thus Ay is an Artinian graded local algebra ov€r Since
the pairing betweers?(FE) and S¢(EY) has values irs°(EV) = C, we see
that AP;(f) is of codimensior in S%(E). Thus(Ay), is a vector space of di-
mensionl overC and coincides with theocleof Ay, i.e. the ideal of elements
of A; annihilated by its maximal ideal.
Note that the latter property characterizes Gorenstein graded local Artinian
rings, see [228], [347].

Proposition 1.3.3(F. S. Macaulay) The correspondencg— Ay is a bijec-
tion betweer|S¢(E")| and graded Artinian quotient algebra$(E)/J with
one-dimensional socle.

Proof Let us show how to reconstru€tf from S(E)/J. The multiplication
of d vectors inE composed with the projection t§(E)/.J; defines a linear
map S*(E) — S4(E)/Js = C. Choosing a basiéS(E)/J)4, we obtain a
linear functionf on S¢(E). It corresponds to an element 8f(E").

O

Recall that any closed non-empty subschéme P is defined by a unique
saturated homogeneous idéalin Clto, . . ., t,]. Its locus of zeros in the affine
spaceA™ ! is the affine con€’; of Z isomorphic to Spec(Cit. .., t,]/17).

Definition 1.3.3 Letf € S¢(EV). A subschem& C |EY| = P(E) is called
apolar tof if its homogeneous ided}, is contained in AP(, or, equivalently,
Spec(4) is a closed subscheme of the affine céheof Z.

This definition agrees with the definition of an apolar homogeneousform
A homogeneous formy € S*(E) is apolar tof if and only if the hypersurface
V() is apolar toV ( f).
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Consider the natural pairing
(Af)e x (Af)a—r — (Ap)a =C (1.53)

defined by multiplication of polynomials. It is well defined because of Lemma
1.3.1. The left kernel of this pairing consistswfc S*(E) mod AP(f) N
S*(E) such thatDyy (f) = 0 for all ¥/ € S *(E). By Lemmal.3.1,
Dy (f) = Dy (Dy(f)) = 0forall ¢’ € ST=*(E). This impliesDy(f) =
0. Thusy € AP(f) and hence is zero il ;. This shows that the pairing (1.53)
is a perfect pairing. This is one of the nice features of a Gorenstein Artinian
algebra (see [228], 21.2).

It follows that the Hilbert polynomial

d
HAf (t) = Zdim(Af)iti = adtd + - +ag

1=0
is a reciprocal monic polynomial, i.e; = aq_;,aq = 1. It is an important
invariant of a homogeneous forj
Examplel.3.1 Letf = [ be thed-th power of a linear formh € EV. For any
Y € S¥(E) = (S*(E)V)Y we have
Dy(I%) =d(d —1)...(d — k+ DI Fp(1) = dld=Fy(1),

where we set

il %ll if £ <d,
0 otherwise.

Here we viewy € S?(E) as a homogeneous form @' . In coordinates] =
St g aiti, 0 =(o, ..., 0,) andy(l) = d¥(ag, . . ., an). Thus we see that
APy (f),k < d, consists of polynomials of degréevanishing at. Assume,
for simplicity, thatl = t,. The idealAP(t¢) is generated by, . . ., 0, 9.
The Hilbert polynomial is equal tb+ ¢ + - - - + t.

1.3.2 Sums of powers

For any pointz € |EV| we continue to denote b/, the corresponding hyper-
plane in|E|.
Supposef € S4(EVY) is equal to a sum of powers of nonzero linear forms

f=1+ 1l (1.54)
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This implies that for any) € S*(E),

Dy(f) = Dp(3_ 1) =3 w(t)ll M. (1.55)
=1 1=1

In particular, takingl = k, we obtain that

{0 50 = {0 € SUE) 1 9(Li) = 0,i=1,...,s} = (I2)a,

where Z is the closed reduced subscheme of poifits|,...,[ls]} C |EY|
corresponding to the linear forms and/; denotes its homogeneous ideal.
This implies that the codimension of the linear sgih. . ., 9) in S4(EY)
is equal to the dimension @¢f 7),, hence the formg!, ..., ¢ are linearly in-
dependent if and only if the poinfs ], . . ., [ls] impose independent conditions
on hypersurfaces of degrden P(E) = |EVY|.
Supposef € (I{,...,1%), then(Iz)s C AP4(f). Conversely, if this is true,
we have

VS Apd(f)L - (IZ)ﬁ[ = <lil7,lg>

If we additionally assume thdf ;. ), ¢ APy (f) for any proper subset’ of
Z, we obtain, after replacing the fornf{s by proportional ones, that

f=10+ 41l

Definition 1.3.4 Apolars-hedronof f is a set of hyperplanel; = V' ({;),i =
1,...,s,in|E| such that

f=l4e

and, considered as poinfs] in P(E), the hyperplanegl, impose independent
conditions in the linear systef®p z)(d)|. A polar s-hedron is callechonde-
generatef the hyperplaned/(I;) are in general linear position (i.e. no@ + 1
hyperplanes intersect).

Note that this definition does not depend on the choice of linear forms defin-
ing the hyperplanes. Also it does not depend on the choice of the equation
defining the hypersurfacg(f). We ca also view a polas-hedron as an un-
ordered set of points in the dual space. In the ease 2, it is often called a
polar s-gon, although this terminology is somewhat confusing since a polygon
comes with an order of its set of vertices.. Also in dimension 2 we cam employ
the terminology ok-laterals.

The following propositions follow from the above discussion.

Proposition 1.3.4 Let f € SYEV). ThenZ = {[l1],...,[ls]} is a polar
s-hedron off if and only if the following properties are satisfied
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(i) 1z(d) C AP4(f);
(i) Iz/(d) ¢ AP,(f) for any proper subset’ of Z.

Proposition 1.3.5 A setZ = {[l1],...,[ls]} is a polar s-hedron of f €
S4(EVYif and only if Z, considered as a closed subschemgif|, is apolar
to f but no proper subscheme Bfis apolar tof.

1.3.3 Generalized polar s-hedra

Propositionl.3.5allows one to generalize the definition of a polar s-hedron.
A polar s-hedron can be viewed as a reduced closed subschiehé(F) =
|E|V consisting ofs points. Obviously,

hY(Oz) = dim HY(P(E),Oz) = s.

More generally, we may consider non-reduced closed subsch8roeB(F)
of dimension0 satisfyingh®(Oz) = s. The set of such subschemes is pa-
rameterized by a projective algebraic variety H{B(F)) called thepunctual
Hilbert schemef P(E) of 0-cycles of lengths.

Any Z € Hilb®*(P(FE)) defines the subspace

Iz(d) =P(H°(P(E),Iz(d)) C H(P(E), Op(g)(d)) = SU(E).
The exact sequence

0 — H(P(E),Zz(d)) — H°(P(E), Op(py(d)) — H°(P(E),Oz) (1.56)

— HY(P(E),Zz(d)) — 0
shows that the dimension of the subspace
(Z)a=P(H(P(E),Iz(d)") C |SU(EY)| (1.57)

is equal toh®(Oz) — h1(Zz(d)) — 1 = s — 1 — h*(Zz(d)). If Z is reduced
and consists of pointgy, ..., ps, then{Z)s = (va(p1),...,va(ps)), where
vg : P(E) — P(S4(E)) is the Veronese map. Henaim(Z),; = s — 1 if the

pointsuvg(p1), - - ., va(ps) are linearly independent. We say thats linearly

d-independentf dim(Z); = s — 1.

Definition 1.3.5 A generalizeds-hedronof f € S%(EV) is a linearly d-
independent subscherdec Hilb®(P(E)) which is apolar tof .

Recall thatZ is apolar tof if, for eachk > 0,

Iz(k) = H°(P(E), Iz (k)) C APy (). (1.58)
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According to this definition, a polar s-hedron is a reduced generalized s-hedron.
The following is a generalization of PropositiarB.4.

Proposition 1.3.6 A linearly d-independent subschenfec Hilb*(P(E)) is
a generalized polas-hedron off € S¢(EV) if and only if

Iz(d) C AP4(f).

Proof We have to show that the inclusion in the assertion implig&l) C
AP, (f) foranyk < d. Foranyy’ € S4~*(E) and any) € I (k), the product
Py’ belongs tolz (k). Thus Dy (f) = 0. By the duality,D,(f) = 0, i.e.
Y € APL(f). 0

Examplel.3.2 LetZ € Hilb*(P(E)) be the union of; fat pointspy, i.e. at
eachp; € Z the idealZ,, is equal to then;-th power of the maximal ideal.
Obviously,

n+m171
m;—1 :

Mw

i=1
Then the linear systen¥;(d)| consists of hypersurfaces of degréewith

pointsp; of multiplicity > m;. One can show (see [347], Theorem 5.3) that
Z is apolar tof if and only if

f=lmmtlg o gt
wherep; = V(I;) andg; is a homogeneous polynomial of degreg — 1 or
the zero polynomial.

Remarkl1.3.1 It is not known whether the set of generalizededra off is

a closed subset of HiffP(E)). It is known to be true fos < d + 1 since

in this caselim Iz(d) = t := dim S%(E) — s for all Z € Hilb®*(P(E)) (see
[347], p.48). This defines a regular map of H{lB(E)) to the Grassmannian
Gi—1(|S%(E)|) and the set of generalizedhedra equal to the preimage of a
closed subset consisting of subspaces contained jif APAlso we see that
h'(Zz(d)) = 0, henceZ is always linearlyi-independent.

1.3.4 Secant varieties and sums of powers
Consider tha/eronese mapf degreel
va: Bl = |SUE), [v] = [,

defined by the complete linear systéff £V |. The image of this map is the
Veronese variety”; of dimension: and degre@™. It is isomorphic taP™. By
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choosing a monomial basiin the linear space of homogeneous polynomials
of degreel we obtain that the Veronese variety is isomorphic to the subvariety

n+d
of p("a") -1 given by equations
Ai~Aj—AkAm:O, i+j=k+m,

where A; are dual coordinates in the space of polynomials of dedréithe
image of P" under the map defined by a choice of a basis of the complete
linear system of hypersurfaces of degeds called an-dimensional Veronese
variety of degreel”.

One can combine the Veronese mapping and the Segre mapping to define
aSegre-Veronese variet,, ., (d1,...,dy). Itis equal to the image of the
mapP™ x - - - x P defined by the complete linear systefhpr, (d;) X - - - X
Opri (di) |-

The notion of a polas-hedron acquires a simple geometric interpretation
in terms of the secant varieties of the Veronese vanély|f a set of points
[l1],...,[ls] in |E| is a polars-hedron of f, then[f] € ([I{],...,[19]), and
hence|f] belongs to thés — 1)-secant subspace Wf;. Conversely, a general
point in this subspace admits a polar s-hedron. Recall that for any irreducible
nondegenerate projective varieXy ¢ PV of dimensionr its ¢-secant variety
Seg(X) is defined to be the Zariski closure of the set of point&®hwhich
lie in the linear span of dimensidnof some set of + 1 linearly independent
points inX.

The counting constants easily gives

dim SeG(X) < min(r(t+ 1) +¢,N).

The subvarietyX c PV is called¢-defectiveif the inequality is strict. An
example of al-defective variety is a Veronese surfaceéPi

A fundamental result about secant varieties is the following Lemma whose
modern proof can be found i®§1], Chapter I, and in [165]

Lemma 1.3.7(A. Terracini) Letpy,...,p:+1 be generak + 1 points in X
andp be a general point in their span. Then

T, (Se¢(X)) = Ty, (X), .-, Tp, ;, (X).

Tt TPt

The inclusion part

Ty, (X), -+, T, 11 (X) € Tp(Se6(X))

R JE]

is easy to prove. We assume for simplicity that 1. Then Seg¢(X) contains
the coneC(p;, X') which is swept out by the lineg;g, ¢ € X. Therefore,
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T,(C(p1,X)) C Tp(Seq (X)). However, it is easy to see thaL(C'(p1, X))
containsT), (X).

Corollary 1.3.8 Seg(X) # PV if and only if, for anyt + 1 general points
of X, there exists a hyperplane sectionXfsingular at these points. In par-
ticular, if N < r(t + 1) + t, the varietyX is ¢t-defective if and only if for any
t + 1 general points ofX there exists a hyperplane section¥fsingular at
these points.

Examplel.3.3 LetX =V} C P(d:n)*l be a Veronese variety. Assume
n(t+1) +t > (*") — 1. A hyperplane section ok is isomorphic to a
hypersurface of degregin P". Thus SegV%) # [S?(EV)| if and only if, for
anyt + 1 general points if®™, there exists a hypersurface of degtesngular
at these points.

Consider a Veronese curvg, C P¢. Assume2t + 1 > d. Sinced < 2t + 2,
there are no homogeneous forms of degteéhich havet + 1 multiple roots.
Thus the Veronese curvB; = v4(P') C P? is not t-degenerate fot >

(d—1)/2.

Taken = 2 andd = 2. For any two points if?? there exists a conic singular
at these points, namely the double line through the points. This explains why a
Veronese surfack; is 1-defective.

Another example i&/2 ¢ P andt = 4. The expected dimension of
Seq(X) is equal tol4. For any 5 points irP? there exists a conic passing
through these points. Taking it with multiplicity 2, we obtain a quartic which
is singular at these points. This shows tWatis 4-defective.

The following Corollary of Terracini’s Lemma is called tRest Main Theo-
rem on apolarityin [226]. The authors gave an algebraic proof of this Theorem
without using Terracini’'s Lemma.

Corollary 1.3.9 A general homogeneous form & (EY) admits a polar
s-hedron if and only if there exist linear fornis,...,l, € EY such that,
for any nonzeray € S4(FE), the idealAP(y)) c S(E") does not contain
{ift .

Proof A general form inS¢(EY) admits a polar s-hedron if and only if the
secant variety Sec,(V}) is equal to the whole space. This means that the
span of the tangent spaces at some paints V (1¢),i = 1,..., s, is equal to

the whole space. By Terracini’'s Lemma, this is equivalent to that the tangent
spaces of the Veronese variety at the poiptare not contained in a hyper-
plane defined by some € S¢(E) = S¢(EY)V. It remains to use that the
tangent space of the Veronese varietyas equal to the projective space of
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all homogeneous formg 11,1 € EV \ {0} (see Exercises). Thus, for any
nonzeroy € S%(E), it is impossible that,«—1,(1/) = 0 for all I and for all

i. But Pa—1,(10) = 0 for all I if and only iszldfl(w) = 0. This proves the
assertion. ' O

The following fundamental result is due to J. Alexander and A. Hirschowitz
[5]. A simplified proof can be found in [55] or [97].

Theorem 1.3.10 If d > 2, the Veronese variety’; is ¢t-defective if and only
if

(n,d,t) =(2,4,4),(3,4,8),(4,3,6), (4,4, 13).

In all these cases the secant vari&@gg (V?7) is a hypersurface. The Veronese
variety V3 is t-defective only it <t < n. Itst-secant variety is of dimension
n(t+1)—2(t—-2)(t+1) 1.

For the sufficiency of the condition, only the cade3, 6) is not trivial. It
asserts that fof general points if?? there exists a cubic hypersurface which
is singular at these points. To see this, we use a well-known fact that &8y
general points irP™ lie on a Veronese curve of degree(see, for example,
[307], Theorem 1.18). So, we find such a cufv¢hrough 7 general points in
P4 and consider the 1-secant variety §g¢). It is a cubic hypersurface given
by the catalecticant invariant of a binary quartic form. It contains the crve
as it singular locus.

Other cases are easy. We have seen already the first two cases. The third
case follows from the existence of a quadric through 9 general poirit3.in
The square of its equation defines a quartic with 9 points. The last case is
similar. For any 14 general points there exists a quadri*inontaining these
points. In the case of quadrics we use that the variety of quadrics of cerank
is of codimension-(r + 1)/2 in the variety of all quadrics.

Obviously, if dimSe¢_1(V}) < dim |[S?EV)| = (") — 1, a general
form f € S¢(EY) cannot be written as a sum efpowers of linear forms.
Sincedim Se¢_1 (V%) < min{(n+1)s—1, (") — 1}, the minimal number

n

s(n, d) of powers needed to writeas a sum of powers of linear forms satisfies

s(n.d) > | 1 (”J’d)] (1.59)

n—+1 n

If V7 is not (s — 1)-defective, then the equality holds. Applying Theorem
1.3.10, we obtain the following.
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o= [("1)

unless(n,d) = (n,2),(2,4),(3,4), (4, 3), (4,4). In these exceptional cases
s(n,d) = n+1,6,10,8,15 instead of expectet511, 5,9, 8, 14.

Corollary 1.3.11

Remark1.3.2 Ifd > 2, in all the exceptional cases listed in the previous
corollary, s(n, d) is larger by one than the expected number. The variety of
forms of degreel which can be written as the sum of the expected number of
powers of linear forms is a hypersurface|@p- (d)|. In the casgn, d,t) =

(2,4, 5), the hypersurface is of degree 6 and is given by the catalecticant matrix
which we will discuss later in this chapter. The curves parameterized by this
hypersurface are Clebsch quartics which we will discuss in Chapter 6. The
case(n,d) = (4,3) was studied only recently iMp2]. The hypersurface is

of degree 15. In the other two cases, the equation expresses that the second
partials of the quartic are linearly dependent (see [265], pp. 58-59.)

One can also consider the problem of a representation of several forms
fi,.-., fr € SYEV) as a sum of powers of the same set (up to proportional-
ity) of linear formsly, .. ., [;. This means that the forms share a common polar
s-hedron. For example, a well-known result from linear algebra states that two
general quadratic formg, g2 in k variables can be simultaneously diagonal-
ized. In our terminilogy this means that they have a common polar k-hedron.
More precisely, this is possible if thiet(q; + A\g2) hasn + 1 distinct roots (we
will discuss this later in Chapter 8 while studying del Pezzo surfaces of degree
4).

Suppose

fi=>"a1l j=1,.. k. (1.60)
=1

We view this as an elemegte UV @ S¢(EY), whereU = C*. The mapp

is the sum of linear mapsp of rank 1 with the images spanned ify So, we
can view eachy as a vector irV¥ @ S¢(EV) equal to the image of a vector in
UV ® EY embedded it/¥ @ EY byu®1 +— u®1?%. Now, everything becomes
clear. We consider the Segre-Veronese embedding

UV x |[EY| — [UY] x [SUEY)| — [UY @ SUEY)|

defined by the linear system of divisors of tyfde d) and view|[¢] as a point
in the projective spacé/V ® S¢(E")| which lies on thes — 1)-secant variety
of Vi_1.,(1,d).
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For any linear mag € Hom(U, S%(EV)), consider the linear map
2
Ty : Hom(U, E) — Hom(A\ U, S*(EY)),
defined by

z¢>(Oé) TUNV Da(u) ((;5(’[})) - D(x(v) (¢(u))

We call this map thdoeplitz map. Suppose thatis of rank 1 with the image
spanned by?, then; is of rank equal talim A> U — 1 = (k — 2)(k +1)/2.
If we choose a basisg, ..., u; in U and coordinates, . .., t, in E, then the
image is spanned bY ! (a;u; — ajuj), wherel =" a;t;. This shows that, if
¢ belongs to Sec 1 (|[UY] x |EV|),

rank¥, < s(k—2)(k+1)/2. (1.61)

The expected dimension of Seg(|UY| x |EY|) is equal tos(k + n) — 1.
Thus, we expect that Sec, (|UY| x |EV|) coincides with|UY @ S¢(EV)|

when
sz{kinczdﬂ. (1.62)

If this happens, we obtain that a general set &drms admits a common polar
s-hedron. Of course, as in the cdse= 1, there could be exceptions if the
secant variety i$s — 1)-defective.

Examplel.3.4 Assumel = 2 andk = 3. In this case the matrix ot is
a square matrix of siz& x (n + 1). Let us identify the spacds" and \> U
by means of the volume form; A us A ug € /\3 U = C. Also identify
o(u;) € S?(EY) with a square symmetric matrix; of size3(n + 1). Then,
an easy computation shows that one can represent the linea&mbyp the
skew-symmetric matrix

0 A A
—Ay 0 As]. (1.63)
—A;, —As; 0
Now condition (1.61) for
L3n+2) ifniseven
k n+d 3 9 1 2( ,
°T k(fnn[ (n;n)f;;r W: 1(3n+1) if nisodd> 3,
3 ifn=1
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becomes equivalent to the condition

0 A A
A=Pf[ -4, 0 A;]=0. (1.64)
Ay —As O

It is known that the trisecant!line Sgg (|U| x |E|) of the Segre-Veronese
variety is a hypersurface if > 3 is odd and the whole spacerifis even (see
[597], Lemma 4.4). It implies that, in the odd case, the hypersurface is equal
to V(A). Its degree is equal t8(n + 1)/2. Of course, in the even case, the
pfaffian vanishes identically.

In the casen = 3, the pfaffianA was introduced by E. Toeplitz [613]. It
is an invariant of the nétof quadrics inP? that vanishes on the nets with
common polar pentahedron. Following [272], we chlhe Toeplitz invariant.
Let us write its generatorg,, fs, f3 in the form (1.60) withn = 3 ands =
3(3n + 1) = 5. Since the four linear formi are linearly dependent, we can
normalize them by assuming that+ ... + 5 = 0 and assume thaf, ..., 5
span a 4-dimensional subspace. Consider a cubic form

1 5
_ 3
F=g2 i
i=1
and find three vectors; in C* such that

((v), ..., 15(v;)) = (aP,...,a9)), j=1,2,3.

Now we check thatf; = D, (F) for j = 1,2,3. This shows that the net
spanned byfy, fo, f5 is a net of polar quadrics of the cuhbit. Conversely, we

will see later that any general cubic form in 4 variables admits a polar pentahe-
dron. Thus any net of polars of a general cubic surface admits a common polar
pentahedron. So, the Toeplitz invariant vanishes on a general net of quadrics in
P3 if and only if the net is realized as a net of polar quadrics of a cubic.

Remarkl.3.3 Let(n, d, k, s) denote the numbers such that we have the strict
inequality in (1.62). We call such-tuples exceptional. Examples of excep-
tional 4-tuples arén, 2,3, 1(3n + 1)) with oddn > 2. The secant hypersur-
faces in these cases are given by the Toeplitz invariafthe casd3, 2, 3, 5)
was first discovered by G. Darboux [168]t has been rediscovered and ex-
tended to any oda by G. Ottaviani [461]. There are other two known ex-
amples. The casg, 3,2,5) was discovered by F. London [406]. The secant
2 We employ classical terminology calling a 1-dimensional (resp. 2-dimensional, resp.
3-dimensional) linear systemgeencil (resp. anet, resp. aveb).

3 Darboux also wrongly claimed that the cd8e2, 4, 6) is exceptional, the mistake was
pointed out by Terracini [608] without proof, a proof is in [67].



52 Polarity

variety is a hypersurface given by the determinant of oédafrthe linear map

T4 (see Exercise 1.30). The examp(8s2, 5, 6) and(5, 2, 3, 8) were discov-
ered recently by E. Carlini and J. Chipalkatti [67]. The secant hypersurface in
the second case is a hypersurface of degree 18 given by the determifignt of
There are no exceptional 4-tuplés, 2, 2, s) [67] and no exceptional 4-tuples
(n,d, k, s) for largen (with some explicit bound)[1]. We refer to [106], where
the varieties of common polar s-hedra are studied.

Remarkl.3.4 Assume that one of the matricés, A, A3 in (1.63) is invert-
ible, say let it bed,. Then

I 0 0 0 A A\ (I 0 0
0 I —-AA )| -4 0 Az fo I 0
0 0 I —Ay —A3; 0 0 —A;'A; T

0 0 Aq
—Ay —As3 0
where
B = A1A§1A3 - AgAglAl.
This shows that

0 Ay Ay
rank | —A; 0 Az | =rankB + 2n + 2.
_A2 —A3 0

The condition that rank < 2 is known in the theory of vector bundles over
the projective plane aBarth’s conditionon the net of quadrics i®". It does

not depend on the choice of a basis of the net of quadrics spanned by the
quadrics with matricesl,, A5, A3. Under Barth’s condition, the discriminant
curvedet(zpA;1+21A2+2A3) = 0 of singular quadrics in the net iearboux
curveof degreen + 1 (see [24]).

1.3.5 The Waring problems

The well-known Waring problem in number theory asks about the smallest

numbers(d) such that each natural number can be written as a sutdpfi-

th powers of natural numbers. It also asks in how many ways it can be done. Its

polynomial analog asks about the smallest numiéer d) such that a general

homogeneous polynomial of degréen n + 1 variables can be written as a

sum ofs d-th powers of linear forms. Corollary (1.3.11) solves this problem.
Other versions of the Waring problem ask the following questions:
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[ d[n] s #] reference|
2s-1[ 1 s| 1 J. Sylvester [602]

512 7 1 | D. Hilbert [325], H. Richmond [512],
F. Palatini [467]

712|12] 5 A. Dixon and T. Stuart[186],
K. Ranestad and F.-O. Schreyer [496]

15 | 16 | K. Ranestad and F.-O. Schreyer [496]
5 1 J. Sylvester [602]

e (W1) Given a homogeneous formfs € S¢(EY), study thevariety of
sums of power&/SP(f, sy, i.e. the subvariety oP(E){) which con-
sists of polars-hedra off or, more general, the subvariety VSP( fof)
Hilb?®(P(E)) parameterizing generalized polar s-hedrg of

e (W2) Givens, find the equations of the closure PS(snd;in S¢(EY) of
the locus of homogeneous forms of degreerhich can be written as a
sum of s powers of linear forms.

We can also ask similar questions for several forms4az").

Note that PS(s, dp) is the affine cone over the secant variety Se¢V?7).
In the language of secant varieties, the variety VSP (’fisjhe set of linearly
independent sets afpointsp, ..., p, in VY such thaff] € (p1,...,p,) and
does not belong to the span of the proper subset of the set of these points. The
variety VSP(f, s)is the set of linearly independefite Hilb*(P(E)) such that
[f] € (Z). Note that we have a natural map

VSP(f; 5)4> G(Sa Sd(E))a Z— <Z>da

whereG(s, SY(E)) = Gs_1(]S4(E)|) is the Grassmannian efdimensional
subspaces o§?(E). This map is not injective in general.

Also note that for a general fornfi, the variety VSP(f, s)s equal to the
closure of VSRf, s)° in the Hilbert scheme HilHP(E)) (see [347], 7.2).
It is not true for an arbitrary formf. One can also embed VSPB(gj° in
P(S4(E)) by assigning td!y, . . ., } the product; - - - [,. Thus we can com-
pactify VSP(f, sy by taking its closure i?(S¢(E)). In general, this closure
is not isomorphic to VSP(f, s).

Remark1.3.5 |If (d,n) is not one of the exceptional cases from Corollary
1.3.11and("jd) = (n+ 1)s for some integes, then a general form of degree
d admits only finitely many polag-hedra. How many? The known cases are
given in the following table.
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It seems that among these are the only cases when the number of polar s-
hedra of a general form is equal to 1. The evidence for this can be found in
papers of M. Mella [420], [421], where it is proven that there are no new cases
whenn = 2,d > 5 andn > 3 andn divides ("9).

An explicit description of positive-dimensional varieties of sums of pow-
ers VSP(f, s)is known only in a few cased, n,s). We will discuss the
caseqd,n,s) = (2s — 1,1, s),(3,3,5) later. For other cases see papers [349]
((d,n, s) = (3,5,10)), [441], ((d,n, s) = (6,2, 10)), [194] ((d,n, s) = (3,2,4))
and [496] ((d,n, 9 = (3,4,8),(2,3,4),(6,2,10)),

1.4 Dual homogeneous forms

1.4.1 Catalecticant matrices
Let f € SY(EY). Consider the linear map (traolarity map)
ap; : S"E — S“HEY), ¢ Dy(f). (1.65)

Its kernel is the space ARf) of forms of degreé: which are apolar tg.
Assume thayf = >_°_, 1¢ for somel; € EV. It follows from (1.55) that

1=1"
api(S*(B)) c (1§ 7%, ... 1¢7%),
and hence
rank(agf) < s. (1.66)

If we choose a basis i and a basis if?V, then a§ is given by a matrix of
size ("1™) x ("1%.*) whose entries are linear forms in coefficientsfof
Choose abas, .. ., &, in E andthe dual basis, . .., t, in EV. Consider
a monomial lexicographically ordered basisSfi(E) (resp. inS¢—*(EY)).
The matrix of a@ with respect to these bases is called tht catalecticant
matrix of f and is denoted by Cgtf). Its entriesc,, are parameterized by

pairs(u,v) € Nt x N+l with |u| = d — k and|v| = k. If we write
d )
f = Z (i>aitl7
li|=d
then
Cuv = Qu4v-

This follows easily from formula (1.5).
Consideringa; as independent variableg we obtain the definition of a
general catalecticant matrix Gat, n).
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Examplel.4.1 Letn = 1. Write f = 3¢ (?)a;td~"t}. Then

ap aq . ag
a a2 Ak+1

Cat(f) =
ad—k  QAQg41 .- Qaq

A square matrix of this type is calledcrculant matrix or aHankel matrix. It
follows from (1.66) thaff € PS(s, d; 1)implies thatall(s+1) x (s+1) minors
of Cat,(f) are equal to zero. Thus we obtain that Se¢V}) is contained in
the subvariety oP“ defined by(s + 1) x (s + 1)-minors of the matrices

to ..t
t P
Cat(d,1) = : :
tg—x ta—k+1 ...  tag

For example, ifs = 1, we obtain that the Veronese curvg C P¢ satisfies
the equations;t; — txt; = 0, wherei + j = k + [. It is well-known that
these equations generate the homogeneous ideal of the Veronese curve (see,
for example,[307]).

Assumed = 2k. Then the Hankel matrix is a square matrix of size 1. Its
determinant vanishes if and only ffadmits a nonzero apolar form of degree
k. The set of suclf’s is a hypersurface in the space of binary forms of degree
2k. It contains the Zariski open subset of forms which can be written as a sum
of k powers of linear forms (see sectitrb.1).

For example, také = 2. Then the equation

ap a1 a2
det ay az as =0 (1.67)
as a3 Q4

describes binary quartics
[ = aoty + 4artdty + 6astats + dagtotd + ayt]

which lie in the Zariski closure of the locus of quartics represented in the form
(apto + Bot1)* + (a1te + Bit1)*. Note that a quartic of this form has simple
roots unless it has a root of multiplicity 4. Thus any binary quartic with simple
roots satisfying equation (1.67) can be represented as a sum of two powers of
linear forms.

The determinant (1.67) is an invariant of a binary quartic. The cubic hyper-
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surface inP* defined by equation (1.67) is equal to the 1-secant variety of a
rational normal curver, in P*.

Note that

dim AP;(f) = dim Ker(ag;) = (") — rank Cat(f).

Therefore,
dim(Ay); = rank Caf(f),
and
d
Ha,(t) =) rank Cat(f)t". (1.68)
=0

Since the ranks of éj;pand its transpose are the same, we obtain

rank Cat(f) = rank Cag_;(f)

confirming thatH 4, (¢) is a reciprocal monic polynomial.

Supposel = 2k is even. Then the coefficient &t in Ha,(t) is equal to the
rank of Cat (f). The matrix Cag(f) is a square matrix of siz€"*). One can
show that for a generdl, this matrix is invertible. A polynomiaf is calledde-
generatdf det(Cat,(f)) = 0. It is callednondegeneratetherwise. Thus, the
set of degenerate polynomials is a hypersurface (catalecticant hypersurface)
given by the equation

det(Cat,(2k,n)) = 0. (1.69)
The polynomialet(Cat, (2%, n)) in variablest;, |i| = d, is called thecatalec-
ticant determinant.

Examplel.4.2 Letd = 2. Itis easy to see that the catalecticant polynomial is
the discriminant polynomial. Thus a quadratic form is degenerate if and only if
it is degenerate in the usual sense. The Hilbert polynomial of a quadratic form

fis
Ha,(t) =1+rt+1t>
wherer is the rank of the quadratic form.

Examplel.4.3 Suppos¢ = td+---+td s <n.Thent}, ... t! arelinearly
independent for any, and hence rank Cdtf) = s for 0 < i < d. This shows
that

Ha,(t)=1+s(t+ -+t +1o
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LetP be the set of reciprocal monic polynomials of degie®ne can strat-
ify the spaceS?(E") by setting, for any € P,

SUEY), = {f € SYEY): Ha, = p}.
If f € PS(s,d;n) we know that
rank Ca,(f) < h(s,d,n); = min(s, (n:k% (n+d7k:)).

n

One can show that, for a general enoygkhe equality holds (see [347], p.13).
Thus there is a Zariski open subset of PS{s;Yiwhich is contained in the
strataS%(E"),, wherep = S0 h(s,d, n);t".

1.4.2 Dual homogeneous forms

In Chapter 1 we introduced the notion of a dual quadri@ K V' (q), wheregq
is a nondegenerate quadratic form, then the dual va@étis a quadric defined
by the quadratic forng" whose matrix is the adjugate matrix @f Using the
notion of the catalecticant matrix, for any homogeneous form of even degree
f € S*(EVY), in a similar fashion one can define the dual homogeneous form
Y e Sk (E).

Consider the pairing

Qs : S*(E) x S*(E) - C, (1.70)
defined by

Qp (41, 42) = ag (1) (12) = Dy, (@B (¥1)) = Dy, (F),

where we identify the space® (E) andS*(E)V. The pairing can be consid-
ered as a symmetric bilinear form 6#i( E). Its matrix with respect to a mono-
mial basis inS* (E) and its dual monomial basis #F (E") is the catalecticant
matrix Caf,(f).

Let us identifyS2; with the associated quadratic form 8fi( E) (the restric-
tion of (2 to the diagonal). This defines a linear map

Q:S$*(EY) — S2(SH(E)Y), Q.
There is also a natural left inverse mapfbf
P:S*(S*(E)Y) — S?F(EY)

defined by multiplicatiors* (EV) x S*(EY) — S?¢(EV). All these maps are
GL(E)-equivariant and realize the linear representaidh(E") as a direct
summand in the representati§A(S*(EV)).
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Definition 1.4.1 Assume thatf € S2*(EV) is nondegenerate. The dual
guadratic foerJY of {2 is called thedual homogeneous forwf f. We will
identify it with the polar bilinest form os* V.

Remarkl.4.1 Note that, contrary to the assertion of Theorem 2.3 in [200],
QY is notequal, in general, v for somef" € S2k(V). We thank Bart van
den Dries for pointing out that the adjugate matrix of the catelecticant matrix
is not, in general, a catalecticant matrix as was wrongly asserted in the proof.
Recall that the locus of zeros of a quadratic frgne S?(EV) consists of
vectorsv € E such that the value of the polarized bilinear fosp £ — EV
atv vanishes ab. Dually, the set of zeros ofV € S?(FE) consists of linear
functions! € EV such that the value @f : EY — E atlis equal to zero. The
same is true for the dual forfy. Its locus of zeros consists of linear forrins
such thaﬂ;l(l’f) € S*(E) vanishes ori. The degreé& homogeneous form
Q;l(l’“) is classically known as thanti-polar of [ (with respect tof).

Definition 1.4.2 Two linear formg,m € EV are calledconjugatewith re-
spect to a nondegenerate forfne S2¢(EV) if

QY (1F,mF) = 0.

Proposition 1.4.1 Supposef is given by(1.54), where the power& are
linearly independent is* (EV). Then each pait;, I, is conjugate with respect
to f.

Proof Since the powerg® are linearly independent, we may include them
in a basis ofS*(E"). Choose the dual basis &' (E). Then the catalecticant
matrix of f has the upper corner matrix of sizequal to the diagonal matrix.
Its adjugate matrix has the same property. This impliesl(halj,z‘ £ j, are
conjugate with respect IQJY. O

1.4.3 The Waring rank of a homogeneous form

Since any quadratic formpcan be reduced to a sum of squares, one can define
its rank as the smallest numbesuch that

g=1+ -+
for somel;,...,l, € EV.

Definition 1.4.3 Letf € SYEY. Its Waring rank wrk( /) is the smallest num-
berr such that

f=0+- 41 (1.71)
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for some linear forms;,...,l,. € EV.
The next result follows immediately from the proof of Propositios.1.

Proposition 1.4.2 Let ), be the quadratic form ors*(E) associated to
f € S%(EV). Then the Waring rank of is greater than or equal to the rank
of Qf.

Let f be a nondegenerate form of even degreeBy Corollary1.3.11,
1 n+d
= > | —
wik(£) = stzn) > [ (" 1)),

with strict inequality only in the following cases

d=2,wrk(f) =rankQy =n+1;
n=2,d=4,wrk(f) = rankQ; = 6;
n=3,d = 4,wrk(f) = rankQ; = 10;
n=4,d=4,wrk(f) =rankQ; = 15.

In all non-exceptional cases,

1 (m+2k\  [(n+k\ (n+2k)---(n+k)
er(f)>n+1( n )_( n >2k---(k+1)(n+1)>rankﬂf'

In most cases, we have strict inequality.

1.4.4 Mukai's skew-symmetric form

Letw € /\2 E be a skew-symmetric bilinear form dn". It admits a unique
extension to a Poisson brackgt},, on S(EY) which restricts to a skew-
symmetric bilinear form

{, o s SPTUEY) x SMY(EY) — S2K(EY). (1.72)

Recall that &oisson brackebn a commutative algebréis a skew-symmetric
bilinear mapA x A — A, (a,b) — {a,b} such that its left and right partial
mapsA — A are derivations.

Let f € S?(EY) be a nondegenerate form aff € S*(S*(E)) be its

dual form. For eachv as above, define,, € N> S1(E) by

Jw7f(g7h) = Q}({g, h}w)

Theorem 1.4.3 Let f be a nondegenerate form $¢*(EY) of Waring rank
N =rankQ; = ("1*). ForanyZ = {[t1],...,[(n]} € VSP(f,N)°, let
(Z)141 be the linear span of the powels™ in S¥+1(EV). Then
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) (Z >1<+1 is isotropic with respect to each form, ¢;
(i) agi ™ (S*'E) C (Z)k41;
(iii) ap’C (Sk~1E) is contained in the radical of each, ;.

Proof To prove the first assertion it is enough to check that, fo#,gll one
haso,, ¢ (17", 15%") = 0. We have

o (L) = QF{ETL T ) = QF UF, 1w (s, 1)-

177

Since/}’ are linearly independent, by Propositiant.1,Q} (If,15) = 0. This
checks the first assertion.
For anyy € S¥~1(E),

N N
=Dy(Y 1) =) Dy(i*) =
i=1 i=1

This shows that #J*l(sk*l(E)) is contained iNZ) ;. It remains to check
thato,, ;(Dy(f),g) = 0 foranyy € S¥1(E), g € SM(EY),w € A’ E.
Choose coordinatds, . . ., t, in EV and the dual coordinatés, . .., &, in E.
The spacd\2 E is spanned by the forms;; = & A §;. We have

{le(f)vg}wij = Déi(Dw(f))ij (g) - Dﬁj (Dib(f))Dfi(g)

2

lk 1 lk‘+1

= De,yy(f)De;(9) — De;vp(f)De;(9) = Dye, (f)De;(9) — Dye,; (f)De; (9).
For anyg, h € S*(EVY),
Q¥ (g,h) = (7 (9), ).
Thus
Uwij,f(Dw(f)ag) = Qy(Dw&(f% D{j (g)) - Q‘\f/‘(Dij (f)>D§1(g))
= me D&j (g)> - <w§j> Dii (g)> = Dw(DEiﬁj (9) _ijﬁi (g)) = Dw(o) =0.
O

Since afj~'(E) is contained in the radical of,, ;, we have the induced
skew-symmetric form os***(EY)/ap; ' (E). By Lemmal.3.1,

SHH(EY) jag (E) = AP (f).

If no confusion arises we denote the induced formdhy; and call it the
Mukai’s skew-form.
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One can also consider the collection of the Mulai skew-forms as a
linear map

2 2
or: \NE = NAPua(f), w0y,

or, its transpose

2 2
for: NAPea(f)Y — N\ EY. (1.73)

Let Z = {[lu],...,[ls]} € VSP(f,sy be a polars-hedron of a nonde-
generate formy € S?*(EV) and, as before, letZ), 1 be the linear span of
(k + 1)-th powers of the linear formés. Let

L(Z) = (Z)rsa/af (S*H(E)). (1.74)

It is a subspace of* ! (EY)/api~! (51 (E)) which we identify with the
dual space AR, 1 (f)" Of APkH(f)

Now observe thatZ);-, , is equal tol (k + 1), where we identifyZ with
the reduced closed subscheme of the dual projective $dce This allows
one to extend the definition df(Z) to any generalized polarhedronZ €
VSP(f; s):

L(Z) = Iz(k+1)"/agi~ " (S*"N(E)) ¢ S*T1(EY) /ag; ' (S* 71 (E)).

Proposition 1.4.4 Let f be a nondegenerate homogeneous form of detjree
of Waring rank equal taV, = ("1*). LetZ, Z' € VSP(f, ;). Then

LZ)=L(Z) <= Z=17.
Proof Itis enough to show that

SupposeZ # Z'. Choose a subscheni& of Z of length N, — 1 which
is not a subscheme df’. Sincedim Iz, (k) > dim S¥(EY) — h9(Oz) =
("2"“) — N+ 1 =1, we can find a nonzerg € I, (k). The sheaf;/Z,
is concentrated at one poimtand is annihilated by the maximal ideal,.
Thusm,Zz, C Zz.Leté € E be a linear form onE" vanishing atz but
not vanishing at any proper closed subschemg&’ofThis implies thaty €
Iz(k+1)=1Iz(k+1)andhence) € Iz (k) C APy(f) contradicting the
nondegeneracy of. O
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Lemma 1.4.5 Letf € S?*(EY) be a nondegenerate form of Waring rank
Ny = ("1™). ForanyZ € VSP(f, \;,)°,
dim L(Z) = ("F*1).

n—1

Proof Counting constants, we see that
dim(Z) 41 > dim S*FH(E) — Ny,

hence

n n—1

dim L(Z) = dim<Z>ﬁ+1—dim ad]i‘l(skfl(E)) < Nk7<n+k—1) _ (n+k—1)'

We have to consider the exceptional cases where Wrk{( fank2 ;. The as-
sertion is obvious in the cage= 1. The spacd.(Z) is of expected dimension
unlessi?, ... ,liﬂ are linearly dependent. This implies thais a quadratic
form of rank less tham + 1, contradicting the assumption.

Assumen = 2,k = 2 anddim L(Z) > 3, or, equivalentlydim(Z); > 4.
Since AR(f) = {0}, there are no conics passing throughIn particular,
no four points are collinear. L&t be a conic through the points], .. ., [I5]
and letz, x5 be two additional points of' such that each irreducible com-
ponent ofC' contains at least four points. Sindém(Z); > 4, we can find
a 2-dimensional linear system of cubics throdgh, . .., [l5], 1, z2. By Be-
zout’s Theorem( belongs to the fixed part of the linear system. The residual
part is a 2-dimensional linear system of lines throligh an obvious contra-
diction.

Similar arguments check the assertion in the cases 2,k = 3,4. In the
remaining case = 3, k = 2, we argue as follows. We havé, = 10. Assume
L(Z) < 6, or, equivalentlydim(Z)3 > 10. Since AB(f) = {0}, no 4 lines
are collinear (otherwise we pass a quadric through 3 points on the line and the
remaining 6 points, it will contain all ten points). Choose three non-collinear
points p1, p2, p3 among the ten points and two general points on each line
Di, p; and one general point in the plane containing the three points. Then we
can find a 3-dimensional linear system of cubic§(i) ;| passing through the
additional 7 points. It contains the plane throyghps, ps. The residual linear
system consists of quadrics through the remaining 7 poinis Bince no four
lines are collinear, it is easy to see that the dimension of the linear system
of quadrics through 7 points is of dimension 2. This contradiction proves the
assertion. O

Corollary 1.4.6 Let f € S?*(EV) be a nondegenerate form of Waring rank
N, = (":’“) Let VSP(f, N.)° be the variety of polar polyhedra gf. Then
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the mapZ — L(Z) is an injective map

VSP(f,Ni)° — G(("T*71), APii1(f)Y).

n—1
Its image is contained in the subvariety of subspaces isotropic with respect to
all Mukai's skew formsr,, y onAP,1(f)".

Examplel.4.4 Assume: = 2. Then wrk(f) = rankQ; = (*1?) if and

only if k = 1,2, 3,4. In these cases the Corollary applies. We will consider the
cases: = 1 andk = 2 later. If ¥ = 3, we obtain that VSP(,0)° embeds in
G(4,9). Its closure is a K3 surface [441], [496].4f= 4, VSP(f,15)° embeds

in G(5,15). It consists of 16 points [496].

1.4.5 Harmonic polynomials

Letq € S?(EY) be a nondegenerate quadratic form/nFor convenience of
notation, we identifyy with the apolarity map a;p: E — EV. By the universal

property of the symmetric power, the isomorphigmE — EV extends to a
linear isomorphismS*(q) : S*(E) — S*(EV) which defines a symmetric
nondegenerate pairing

(,)r:S¥(E)x S*E)— C. (1.75)
It is easy to check that, for arfyc S*(F) andv € E,
(€,0") = KE(L),

wherel,, € EV is the linear function a})dv).

Let us compare the pairinty 75 with the pairing(2,» from (1.70). Choose
a basisng, ...,n, in E and the dual basi,...,t, in £V such thaty =
1(3-t?) so thatg(n;) = t;. Then

S*(q)(n*) = t*.
However,
apf. (n') = k1t + qg,
for someg € S¥~2(EV). Thus
(5"(a) — 72 ) (5°(E) € a5*2(B")".
Let
Hy(B) = (¢S *(EY))* C S*(E)
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be the subspace @fharmonic symmetric tensors. In more convenient lan-
guage, exchanging the roles Bfand EV, and replacing; with the dual form
q" € S?(E), we have

HE(EY) = Ker(Dyv : S¥(EY) — S*72(EY)).

In the previous choice of coordinates, the operdlgr is theLaplace opera-
tor 1 3° g—; Restricting a. to the subspacg{; (E), we obtain a nondegen-
erate symmetric pairing

HE(E) x HE(E) — C

which coincides with the restriction %qu to the same subspace. Changing
E to EV, we also obtain a symmetric nondegenerate pairing

HE(EY) x HE(EY) — C

which can be defined either by the restriction of the pairing (1.75) or by the
quadratic form%Q(QV)k. Note that all these pairings are equivariant with re-
spect to the orthogonal group O(F), 4.e. can be considered as pairings of the
linear representations of O(E).gWe have the direct sum decomposition of
linear representations

S*¥(E) = HE(E) @ ¢V S"2(E). (1.76)

The summang" S*~(E) coincides with af, ' (S¥~2(E)). The linear repre-
sentatior}(E) is an irreducible representation of O(H,(gee [278]).

Next let us see that, in the case whgris a power of a nondegenerate
guadratic polynomial, the Mukai form coincides, up to a scalar multiple, with
the skew form on the space of harmonic polynomials studied by N. Hitchin in
[330] and [331].

The Lie algebra(E, q) of the orthogonal group O(FE)ds equal to the Lie
subalgebra of the Lie algebg#( E') of endomorphisms oF which consists of
operatorsd : E — E such that the compositiodo ¢! : EY — E — E
is equal to the negative of its transpose. This defines a linear isomorphism of
vector spaces

2
/\EV—>0(E,q), w—O=qglow:E—EY—E.

Now, takingw € A E, and identifyingS*+!(EY) /agf; ' (S¥~! (E)) with
HEFTL(EY), we obtain the Mukai pairing
Tugr - HETH(EY) x HEYH(EY) - C

on the space of harmonic+ 1-forms onkE.
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Proposition 1.4.7 Foranyg,h € HEt'(EY) and anyw € AN EY,
(k+1)2
k!

where(, )11 : SFHL(EY) x SF+1(EY) — Cis the symmetric pairing defined
bysk+1(q—1)_

Ot (9, h) = (@-g9,h)k41,

Proof Itis known that the spack} ™ (E") is spanned by the formgv)***,
wherew is an isotropic vector for, i.e. [v] € V(q) (see [278], Proposition
5.2.6). So, it is suffices to check the assertion whea ¢(v)**! andh =
q(w)**! for some isotropic vectors, w € E. Choose a basip, . . .,&,) in

E and the dual basi, . .., ¢, in EV as in the beginning of this subsection.
An elementu € o(E, ¢) can be written in the forny aijti% for some skew-
symmetric matrixa;; ). We identify(a;; ) with the skew 2-formv € A° E. We
can also writgy = (a-t)*** andh = (3-t)**1, where we use the dot-product
notation for the sum§ «;¢;. We have

(wg, W = (kDY aijt%(m)’““)(ﬂ) = (k+D)!(k+1) (- B) w(act, B1).
J
The computations from the proof of Theordm.3, show that

Ow,qk (97 h) = Q;/k((a : t)ka (ﬂ . t)k)w(a : t?ﬁ . t)

It is easy to see thatqvk coincides with(),v« on the subspace of harmonic
polynomials. We have

Qgvye (- )*, (B-1)*) = Dy (5 D) (8- 1))

= k!Dy.c)r (8- 1)%) = (k)*(a - B)".

This checks the assertion.
O

Computing the catalecticant matrix @f we find thatg* is a nondegenerate
form of degreek. Applying Corollaryl.4.6, we obtain that in the cases listed
in Corollary1.3.11, there is an injective map

VSP({, ("1%)) — G(("F* Y, HETH(EY)). (1.77)

n n—1

Its image is contained in the subvariety of subspaces isotropic with respect to
the skew-symmetric formgy, h) — (u - g, k)k+1,u € o(E, q).

The following Proposition gives a basis in the space of harmonic polynomi-
als (see [428]). We assume that, ¢) = (C"*1, 13 ¢2).
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Proposition 1.4.8 For any set of non-negative integeis, . . ., b, ) such that
b <land) b; =k, let

Ellao/2)!
k a 0
Hbo,...,b” = Z(_l)[ 0/2]1—[ o ai! H 1 b 7(11 Ht

'LO

where the summation is taken over the set of all sequences of non-negative
integers(ao, . . ., a,) such that

e a;=b; mod2,i=0,...,n,
© >igai =k,
e a;<b,i=1,....n

Then the ponnomiaIHfO,_“’bn form a basis of the spadef (C"*).

For any polynomialf € Clto,...,t,] one can find the projectioff f to
the subspace of harmonic polynomials. The following formula is taken from
[641].

[k/2]

Hf =f- Z 1)st A%

25sl(n —3+2k)(n—5+2k)---(n—2s— 1+ 2k)’
(1.78)

whereA = 3" g—; is the Laplace operator.

Examplel.4.5 Letn = 2 so thatdim £ = 3. The space of harmonic poly-
nomialsH*(EV) is of dimension(*$?) — (§) = 2k + 1. Since the dimen-
sion is odd, the skew formr,, .« is degenerate. It follows from Proposition
1.4.7that its radical is equal to the subspace of harmonic polynomialsch
thatw - g = 0 (recall thatw denotes the element of E, ¢) corresponding to
w € A E). In coordinates, a vectar = (ug, u1, uz) € C* corresponds to the
skew-symmetric matrix

0 Uy UL
—Ug 0 U9
—U1 —U2 0

representing an endomorphism6f or an element of\2 E. The Lie bracket
is the cross-product of vectors. The action of a veaton f € Clto, t1, t2] is
given by

Z eukt Uj
4,5,k=0 at

wheree; ; 1, = 0 is totally skew-symmetic with values equalGol, —1.
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For anyv € E, let us consider the linear forip = ¢(v) € EY. We know
thatq(v)¥ € HE(EY)if [v] € V(q). I [v] € V(¢), then we can consider the
projectionf, of (I,)* to H(EY). By (1.78), we get

(k/2]

k(k—1)---(k—2s+1) o
; s _s1k—2s
e Z 255' 2k —1)---(2k — 25 + 1)q(“) ¢l (1.79)

We have
U ly = lyxo.
Sincef — u - f is a derivation of Sym(F) andu - ¢ = 0, we obtain

[k/2]

b O S okl = 1) (k = 25 + 1)(k — 25)(0) B2

2551(2k — 1) -~ (2k — 25 + 1)

(1.80)

This implies that the harmonic polynomig} satisfiesu - f, = 0 and hence
belongs to the radical of the skew form, ... The Lie algebraso(3) is iso-
morphic to the Lie algebrsi(2) and its irreducible representation on the space
of degreek harmonic polynomials is isomorphic to the representatios! (@)
on the space of binary forms of degrek. It is easy to see that the space of
binary forms invariant under a non-zero elementi@d2) is one-dimensional.
This implies that the harmonic polynomi#), spans the radical of,, ,~ on
HE(EY).

Let f € H¥(EY) be a non-zero harmonic polynomial of degreeThe
orthogonal complemenft" of f with respecttd , ), : H} (EY)xHE(EY) —
C is of dimensior2k. The restriction of the skew-symmetric fom) « to ft
is degenerate if and only if, € f+,i.e. (fu,f)r = (5, f) = f(u) =
Here we used that the decomposition (1.76) is an orthogonal decomposition
with respect to , )x. Let Pf be the pfaffian of the skew form, .« on f+. It
is equal to zero if and only if the form is degenerate. By the above, it occurs if
and only if f(u) = 0. Comparing the degrees, this gives

V(f) = V(Pf).

So, every harmonic polynomial can be expressed in a canonical way as a pfaf-
fian of a skew-symmetric matrix with entries linear forms, a result due to N.
Hitchin [332].
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1.5 First examples

1.5.1 Binary forms

Let U be a 2-dimensional linear space ahd S?(U") \ {0}. The hypersur-
face X = V(f) can be identified with a positive divisor div] /= > m;x;

of degreed on |U| = P'. Since \’ U = C, we have a natural isomorphism
U — U of linear representations of SL(UIt defines a natural isomorphism
between the projective ling/| and its dual projective lin@(U). In coordi-
nates, a point = [ag, a;] is mapped to the hyperplai&a;ty — agt;) whose
zero set is equal to the point If X is reduced (i.ef has no multiple roots),
then, under the identification of7| andP(U), X coincides with its dualX'V.

In general, XV consists of simple roots gf. Note that this is consistent with
the Plckeri-Teissier formula. The degrees of the Hessian and the Steinerian
coincide, although they are differentdf> 3. Assume thafX is reduced. The
partial derivatives off define the polar map : |[U| — |U]| of degreed — 1.
The ramification divisor He(X consists of2d — 2 points and it is mapped
bijectively onto the branch divisor St()X

Examplel.5.1 We leave the case = 2 to the reader. Consider the case
d = 3. In coordinates

[ = aoty + 3ait3ty + 3astots + asts.
All invariants are powers of théiscriminant invariant
A = ata3 + dagas + 4adaz — 6agaiazaz — 3atas. (1.81)
whose symbolic expression [$2)%(13)(24)(34)? (see p31], p. 244).
H = (apag — a?)t2 + (apas — ajaz)toty + (ajaz — a3)ts.
Its symbolic expression i&wb)a,b,. There is also a cubic covariant

ts 3tity 3tot?

J=J(fH) =det | %2 T2 00
as —asg —aq ao
0 —as —2(12 aq

with symbolic expressiofiab)?(ac)?b,c2. The covariants, H and.J form a
complete system of covariants, i.e. generate the module of covariants over the
algebra of invariants.

Examplel.5.2 Consider the cage= 4. In coordinates,

f = aoty + daitdty + 6axtats + dastots + agti.
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There are two basic invariantsandT" on the space of quartic binary forms.
Their symbolic expression arg = (12)* andT = (12)2(13)%(23)2. Explic-
itly,

S = agay — 4aias + 3a2, (1.82)

2 2 3
T = apazaq + 2a1a2a3 — apaz — ajaq — as.

Note that?" coincides with the determinant of the catalecticant matriy of
Each invariant is a polynomial if andT'. For example, the discriminant in-
variant is equal to

A=8%—27T2

The Hessian He(X= V(H) and the Steinerial§(X) = V(K) are both of
degree 4. We have

H = (apas — a%)té + 2(agag — alag)tgtl + (agaq + 2a1a3 — 3a§)t(2)t%
3 2\ 44
+2(ar1aq — agas)tot] + (azaq — a3)t].
and
K = A((aot0+a1t1)w3+3(a1t0+a2t1)m2y+3(a2to+a3t1)my2+(a3t0+a4t1)y3).

Observe that the coefficients @f (resp.K) are of degree 2 (resp. 4) in
coefficients of f. There is also a covariant = J(f, H) of degree6 and
the module of covariants is generated by, J over C[S,T]. In particular,
K = oTf + BSH, for some constants and 3. By taking f in the form

f=te+6mtats + 1, (1.83)
and comparing the coefficients we find
9K = —3Tf + 25H. (1.84)
Under identificatiofU| = P(U), a generalized&-hedronZ of f € S4(UV)
is the zero divisor of a forng € S*(U') which is apolar tof. Since
HY(|E|,Z(d) = H' (P, Opi(d— k)) =0, k>d+1,

any Z is automatically linearly independent. Identifying a pdigite |S*(U)|
with the zero divisor diyg), we obtain

Theorem 1.5.1 Assume: = 1. Then

VSP(f;k) = |AP:(f)]-
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Note that the kernel of the map
SEU) — STHUY), Y= Dy(f)

is of dimension> dim S*(U) —dim S4=*(UV) = k+1—(d—k+1) = 2k—d.
ThusD,,(f) = 0 for some nonzerg € S*(U), wheneveRk > d. This shows
that f has always generalized pofathedron fork > d/2. If d is even, a binary
form has an apolat/2-form if and only ifdet Cat; /> (f) = 0. This is a divisor
in the space of all binarg-forms.

Examplel.5.3 Takel = 3. Assume thay admits a polar 2-hedron . Then
f= (a1t0 + b1t1)3 + (a2t0 + bgﬁl)g.

Itis clear thatf has 3 distinct roots. Thus, jf = (aito + bit1)?(asto + baty)
has a double root, it does not admit a pdtanedron. However, it admits a
generalized-hedron defined by the divis@p, wherep = (b1, —ay). In the
secant variety interpretation, we know that any pointSA(E")| either lies
on a unique secant or on a unique tangent line of the rational cubic curve. The
space AR(f) is always one-dimensional. It is generated either by a binary
quadric(—b1&o 4 a1£1)(—b2&o + azéy), or by (—b1&o + a1&1)?.

Thus VSP(f2)° consists of one point or empty but VSP2f,always con-
sists of one point. This example shows that VSB[ f# VSP(f,Q)O in gen-
eral.

1.5.2 Quadrics

It follows from Examplel.3.3that Seg(Vy) # |S%(EY)| if and only if there
exists a quadric with+1 singular points in general position. Since the singular
locus of a quadrid’(¢) is a linear subspace of dimension equal to corapk(gq

1, we obtain that Sed V%) = |S?(EV)|, hence any general quadratic form can
be written as a sum of+ 1 squares of linear forms, . . . , 1,,. Of course, linear
algebra gives more. Any quadratic form of ramk 1 can be reduced to sum of
squares of the coordinate functions. Assumeghatt?+- - - +t2. Suppose we
also have; = I2 + - - - + [2. Then the linear transformatian — I; preserves

q and hence is an orthogonal transformation. Since polar polyhedyaod

A\q are the same, we see that the projective orthogonal group RQ(racts
transitively on the set VSP( f,+11)° of polar(n+1)-hedra ofy. The stabilizer
group G of the coordinate polar polyhedron is generated by permutations of
coordinates and diagonal orthogonal matrices. It is isomorphic to the semi-
direct product™ x &, (the Weyl group of root systems of typés,, D,,),
where we use the notatid* for the 2-elementary abelian grod@g/2Z)".
Thus we obtain
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Theorem 1.5.2 Letq be a quadratic form im + 1 variables of rankn + 1.
Then

VSP(¢,n+1)° 2 PO(n+1)/2" x &,41.
The dimension 0¥SP(q,n+ 1)° is equal toln(n + 1).

Examplel.5.4 Taken = 1. Using the Veronese map, : P' — P2, we
consider a nonsingular quadiiz = V(¢) as a pointp in P2 not lying on the
conicC = V(tota — t3). A polar 2-gon ofq is a pair of distinct pointg, p»
on C such thatp € (p1,p2). The set of polag-gons can be identified with
the pencil of lines through with the two tangent lines t6' deleted. Thus
W(q,2)° = P\ {0,00} = C*. There are two generalized 2-go®s, and
2pso defined by the tangent lines. Each of them gives the representatjcasof
l1l2, whereV (1;) are the tangents. We have VSP2Y = VSP(f,Z)O =~ pt,

Letq € S?(EY) be a nondegenerate quadratic form. We have an injective
map (1.77)

VSP(q,n+1)° = G(n, H2(E)) = G(n, ("5?) — 1). (1.85)

Its image is contained in the subvarigtyn, HZ(E)), of subspaces isotropic
with respect to the Mukai skew forms.

Recall that the Grassmann variefym, W) of linear m-dimensional sub-
spaces of a linear spad€ of dimensionV carries the natural rank vector
bundleS, theuniversal subbundle. Its fibre over a pointe G(m, W) is equal
to L. Itis a subbundle of the trivial bund®’;(,,, 1wy associated to the vector
spaceV/. We have a natural exact sequence

0—-8— WG(m,W) — Q9 — 0,

where@ is theuniversal quotient bundle, whose fibre oveis equal tolV/ L.
By restriction, we can view the Mukai form, : AN E — N\ Hg(EV) as a
section of the vector bundia® SV @ A\® EV. The image of VSR, n + 1) is
contained in the zero locus of a section of this bundle defined,bgince the
rank of the vector bundle is equal {§) (1), we expect that the dimension
of its zero locus is equal to

st 510 () () e ()(7):

Unfortunately, this number is 0 for n > 2, so the expected dimension is
wrong. However, when = 2, we obtain that the expected dimension is equal
to3 = dim VSP(g,3). We can view, , as a hyperplane in theilriker embed-
ding of G(2, HZ(E)) = G(2,5). So, VSP(¢3) embeds into the intersection
of 3 hyperplane sections 6#(2, 5).
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Theorem 1.5.3 Letq be a nondegenerate quadratic form on a 3-dimensional
vector spacel. Then the image 0¥SP(¢,3) in G(2,’H2(F)), embedded in
the Plicker space, is a smooth irreducible 3-fold equal to the intersection of
G(2,HZ(E)) with a linear space of codimension 3.

Proof We havedim H2(E) = 5, s0G(2, H2(E)) = G(2,5) is of dimension

6. Hyperplanes in the Btker space are elements of the splayk\é H2Z(E)Y|.
Note that the functions, ., are linearly independent. In fact, a bagisé, &

in E gives a basisig; = & A &1, wor = & A a,wis = £ A& in APE.
Thus the space of sectiong,, is spanned by 3 sectiong,, so2, s12 corre-
sponding to the forms;;. Without loss of generality, we may assume that
q = t2+t2 + 2. If we takea = toty +t3,b = —t2 + 2 + 12, we see
that sp1(a,b) # 0, s12(a,b) = 0, sp2(a,b) = 0. Thus a linear dependence
between the functions;; implies the linear dependence between two func-
tions. It is easy to see that no two functions are proportional. So our 3 func-
tions s;;,0 < ¢ < j < 2 span a 3-dimensional subspace/lsﬁ H(f(EV)
and hence define a codimension 3 projective subspanehe Plicker space
I\ HZ(E)|. The image of VSR, 3) under the map (1.85) is contained in the
intersection(2, E) N L. This is a 3-dimensional subvariety 612, HZ(E)),

and hence contains(VSP(¢,3)) as an irreducible component. We skip an ar-
gument, based on counting constants, which proves that the subsdzee
longs to an open Zariski subset of codimension 3 subspacg§’ @fﬁ(E)

for which the intersectior, N G(2, H2(E)) is smooth and irreducible (see
[200]). O

It follows from the adjunction formula and the known degre&¢2, 5) that
the closure of VSP((3)° in G(2,’HZ(E)) is a smooth Fano variety of degree
5. We will discuss it again in the next chapter.

Remarkl.5.1 One can also consider the varieties VSP)§os s > n + 1.

For example, we have

t—t3=1L1(to+t1)>+ 3(to —t1)? — $(t1 +12)? — 2(¢] — t2)?,
2+ 15 +15 = (to +ta)* + (to +t1)* + (¢ +12)* — (to + 11 +t2)2

This shows that VSP(q, # 2),VSP(gq,n+ 3) are not empty for any nonde-
generate quadri in P, n > 2.
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Exercises

1.1 SupposeX is a plane curve angd € X is its ordinary double point. Show that
the pair consisting of the tangent line B (X) atx and the lineaz is harmonically
conjugate (see sectichl.2) to the pair of tangents to the branchesXoft z in the
pencil of lines throughe. If x is an ordinary cusp, then show that the polar line of
P,(X) atzx is equal to the cuspidal tangent &fat x.

1.2 Show that a line contained in a hypersurfa€ebelongs to all polars o with
respect to any point on this line.

1.3 Find the multiplicity of the intersection of a plane cur¢ewith its Hessian at an
ordinary double point and at an ordinary cuspglofShow that the Hessian has a triple
point at the cusp.

1.4 Suppose a hypersurface in P" has a singular point of multiplicity m > 1.
Prove that He(X has this point as a point of multiplicity (n + 1)m — 2n.

1.5 Suppose a hyperplane is tangent to a hypersutfaedong a closed subvariely
of codimension 1. Show thaf is contained in He(X.

1.6 Supposef is the product ofd distinct linear formd;(to, . ..,t»). Let A be the
matrix of size(n+ 1) x d whosei-th column is formed by the coefficients bf(defined,
of course up to proportionality). L&k ; be the maximal minor ofA corresponding to a
subset! of [1,...,d] and f; be the product of linear forms, : ¢ I. Show that

He(f) = (=1)"(d—1)f" "' Y ATf7.

([437], p. 660).

1.7 Find an example of a reduced hypersurface whose Hessian surface is nowhere re-
duced.

1.8Show that the locus of the points on the plane where the first polars of a plane curve
X are tangent to each other is the HessiaXadind the set of common tangents is the
Cayleyan curve .

1.9 Show that each inflection tangent of a plane cukveconsidered as a point in the
dual plane, lies on the Cayleyan &f.

1.10Show that the class of the Steinerian S)(df a plane curveX of degreel is equal
to 3(d — 1)(d — 2) but its dual is not equal to Cay ()X

1.11LetD,, . C P™"~! be the image in the projective space of the varietynok n
matrices of rank< min{m, n} — 1. Show that the variety

ﬁm,n = {(A7J3) S Pmn—l X ]Pn A= 0}
is a resolution of singularities db,,, ,,. Find the dual variety oD,,, ,,. 1.12Find the

dual variety of the Segre varietfP" x P") ¢ P"*+2".

1.13Let X be the union o nonsingular conics in general position. Show that is
also the union of nonsingular conics in general position.

1.14Let X has onlys ordinary nodes and ordinary cusps as singularities. Assume that
the dual curveX ' has also only ordinary nodes and ordinary cusps as singularities.
Find 6 and% in terms ofd, 9, .

1.15Give an example of a self-dual (i.&L" = X) plane curve of degree 2.
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1.16 Show that the Jacobian of a net of plane curves has a double point at each simple
base point unless the net contains a curve with a triple point at the base point [235].

1.17Let |L| be a generah-dimensional linear system of quadricslift and|L|* be
the((”;Q) — n — 2)-dimensional subspace of apolar quadric in the dual space. Show
that the variety of reducible quadrics ib|* is isomorphic to the Reye variety of |

and has the same degree.

1.18Show that the embedded tangent space of the Veronese Vdfietlya point repre-
sented by the forrif' is equal to the projectivization of the linear space of homogeneous
polynomials of degred of the formi¢~1m.

1.19Using the following steps, show thef is 6-defective by proving that for 7 general
pointsp; in P* there is a cubic hypersurface with singular points agtf&

(i) Show that there exists a Veronese cuRieof degree 4 through the seven points.
(i) Show that the secant variety d?4 is a cubic hypersurface which is singular
alongRy.

1.20Let ¢ be a nondegenerate quadratic formi# 1 variables. Show that VSP(g,+
1)° embedded iz (n, E) is contained in the linear subspace of codimension

1.21 Compute the catalecticant matrix ¢@f), where f is a homogeneous form of
degree 4 in 3 variables.

1.22Let f € S?*(EY) andQ); be the corresponding quadratic form SA(E). Show
that the quadrid’ (Q;) in |S*(E)| is characterized by the following two properties:

e lts preimage under the Veronese map: |E| — |S*(E)| is equal toV (f);
e Q; is apolar to any quadric ifS*(E")| which contains the image of the Veronese
map|E"| = P(E) — [S*(EY)| = [P(S"(E))|.

1.23Let Cy, be the locus inS?*(EY)| of hypersurface¥ (f) such thatlet Cat, (f) =
0. Show thatCy is a rational variety. [Hint: Consider the rational mép --» |E|)
which assigns td/( /) the point defined by the subspace;AP) and study its fibres].

1.24Give an example of a polar 4-gon of the cuhi¢, 2 = 0.
1.25Find all binary forms of degreé for which VSP(f2)° = (.

1.26Let f be a form of degred in n + 1 variables. Show that VSP({71%))° is an

irreducible variety of dimension(”gd).

1.27 Describe the variety VSP(4), wheref is a nondegenerate quadratic form in 3
variables.

1.28 Show that a smooth point of a hypersurfaceX belongs to the intersection of
the polar hypersurfaceB, (X) and P,2 (X) if and only if the line connecting andy
intersectsX at the pointy with multiplicity > 3.

1.29Show that the vertices of two polar tetrahedra of a nonsingular quadit are

base points of a net of quadrics. Conversely, the set of 8 base points of a general net of
guadrics can be divided in any way into two sets, each of two sets is the set of vertices
of a polar tetrahedron of the same quadi8f].

1.30Suppose two cubic plane curved f) andV (g) admit a common polar pentagon.
Show that the determinant of tisex 6-matrix [Cat; (f)Cat (g)] vanishes [246].
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Historical Notes

Although some aspects of the theory of polarity for conics were known to
mathematicians of Ancient Greece, the theory originates in projective geom-
etry, in the works of G. Desargues, G. Monge and J. Poncelet. For Desargues
the polar of a conic was a generalization of the diameter of a circle (when
the pole is taken at infinity). He referred to a polar line as a“transversale de
I'ordonnance”. According to the historical accounts found in [235], vol. II, and
[148], p. 60, the name “polaire” was introduced by J. Gergonne. Apparently,
the polars of curves of higher degree appear first in the works of E. Bobilier
[46] and, then with introduction of projective coordinates, in the works of J.
Plucker [488]. They were the first to realize the duality property of polars: if
a pointz belongs to thes-th polar of a pointy with respect to a curve of de-
greed, theny belongs to th€d — s)-th polar ofx with respect to the same
curve. Many properties of polar curves were stated in a purely geometric way
by J. Steiner [590], as was customary for him, with no proofs. Good historical
accounts can be found in [41] and [473], p.279.

The Hessian and the Steinerian curves with their relations to the theory of
polars were first studied by J. Steiner [590] who called tlwemjugate Kern-
curven. The current name for the Hessian curve was coined by J. Sylvester
[603] in honor of O. Hesse who was the first to study the Hessian of a ternary
cubic [317] under the nameaer Determianteof the form. The current name
of the Steinerian curve goes back to G. Salmon [538] and L. Cremona [156].
The Cayleyan curve was introduced by A. Cayley in [75] who called it the
pippiana. The current name was proposed by L. Cremona. Most of the popular
classical text-books in analytic geometry contain an exposition of the polarity
theory (e.g. [125], [235], [538]).

The theory of dual varieties, generalization ofi€ker formulae to arbitrary
dimension is still a popular subject of modern algebraic geometry. It is well-
documented in modern literature and for this reason this topic is barely touched
here.

The theory of apolarity was a very popular topic of classical algebraic ge-
ometry. It originates from the works of Rosanes [523] who called apolar forms
of the same degresonjugate formand Reye [505]. who introduced the term
“apolar”. The condition of polarityD,, (f) = 0 was viewed as vanishing of the
simultaneous bilinear invariant of a forihof degreed and a formy of class
d. It was called theharmonizant.. We refer for survey of classical results to
[473] and to a modern exposition of some of these results to [200] which we
followed here.

The Waring problem for homogeneous forms originates from a more gen-
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eral problem of finding a canonical form for a homogeneous form. Sylvester’s
result about reducing a cubic form in four variables to the sum of 5 powers
of linear forms is one of the earliest examples of solution of the Waring prob-
lem. We will discuss this later in the book. F. Palatini was the first who recog-
nized the problem as a problem about the secant variety of the Veronese variety
[465], [466] and as a problem of the existence of envelopes with a given num-
ber of singular points (in less general form the relationship was found earlier
by J. E. Campbell [63]). The Alexander-Hirschowitz Theorem was claimed by
J. Bronowski in 1933, but citing C. Ciliberto [114], he had only a plausibility
argument. The case = 2 was first established by F. Palatini [466] and the
casen = 3 was solved by A. Terracini [609]. Terracini was the first to rec-
ognize the exceptional case of cubic hypersurfacé®!ifs08]. The original
proof of Terracini's Lemma can be found in [610]. We also refer to [265] for

a good modern survey of the problem. A good historical account and in depth
theory of the Waring problems and the varieties associated to it can be found
in the book of A. larrobino and V. Kanev [347].

The fact that a general plane quintic admits a unique polar 7-gon was first
mentioned by D. Hilbert in his letter to C. Hermite [325]. The proofs were
given later by Palatini [468] and H. Richmond [512],

In earlier editions of his book [539] G. Salmon mistakenly applied counting
constants to assert that three general quadris$ admit a common polar pen-
tahedron. G. Darboux [168] was the fist to show that the counting of constants
is wrong. W. Frahm [246] proved that the net of quadrics generated by three
guadrics with a common polar pentahedron must be a net of polars of a cubic
surface and also has the property that its discriminant curve igati. quar-
tic, a plane quartic which admits an inscribed pentagon6l8] E.Toeplitz
(the father of Otto Toeplitz) introduced the invariahtof three quadric sur-
faces whose vanishing is necessary and sufficient for the existence of a com-
mon polar pentahedron. The fact that two general plane cubics do not admit a
common polar pentagon was first discovered by F. London [406]. The Waring
Problem continues to attract attention of contemporary mathematicians. Some
references to the modern literature can found in this chapter.
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Conics and quadric surfaces

2.1 Self-polar triangles

2.1.1 Veronese quartic surfaces

LetP? = |E| and|S?(EVY)| = P° be the space of conics #F. Recall, for this
special case, the geometry of tieronese quartic surfadés, the image of the
Veronese map

va 1 |EY| = |S2(EY)], (1]~ (7],

If we view S?(EV) as the dual space ¢ (E), then the Veronese surface pa-
rameterizes hyperplanég in S?(E) of conics passing through the pojfitin
the dual plan¢E" |. The Veronese may is given by the complete linear sys-
tem|O|pv((2)| = |S?(E)|. Thus the preimage of a hyperplang #(EV)| is
a conic in the plangk"Y|. The conic is singular if and only if the hyperplane is
tangent to the Veronese surface. There are two possibilities, either the singular
conicC'is the union of two distinct lines (a line-pair), or it is equal to a double
line. In the first case the hyperplane is tangent to the surface at a single point.
The point is the image of the singular pojijtof the conic. In the second case,
the hyperplane is tangent to the Veronese surface along a Buegeial to the
image of the lineC\eq under the restriction of the Veronese map. It follows
that the curveR is a conic cut out on the Veronese surface by a plane. We see
in this way that thedual variety of the Veronese surfaiseisomorphic to the
discriminant cubic hypersurfad®,(2) parameterizing singular conics.

The tangent plane to the Veronese surface at a pidfnis the intersection
of hyperplanes which cut out a conic|iV| with singular poin{i]. The plane
of conics in| E| apolar to such conics is the plane of reducible conics with one
component equal to the lifé(1).

Since any quadratic form of rank 2 i can be written as a sum of quadratic
forms of rank 1, the secant variety $€¢2) coincides withD4(2). Also, it
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coincides with thetangential varietyTan(\3), the union of tangent planes
T.(V3),x € V3. Itis singular along the Veronese surface.

Choosing a basis ift we can identify the spacg?(E") with the space of
symmetric3 x 3-matrices. The Veronese surfa¢g in |S?(EVY)| is identified
with matrices of rank 1. Its equations are givenZdy 2-minors. The variety
of matrices of rank< 2 is the cubic hypersurface whose equation is given by
the determinant.

Let us look at a possible projection @ to P*. It is given by a linear sub-
system|V| of |S?(E)|. Let K be the apolar conic to all conics frofir|. It is
a pointo in the dual spacgS?(EY)| equal to the center of the projection. The
conic K could be nonsingular, a line-pair, or a double line. In the first two cases
o ¢ V3. The image of the projection is a quartic surfacei called apro-
jected Veronese surface.Af is nonsingulare does not lie on Se¢V3), hence
the projected Veronese surface is a nonsingular quartic surfa&e=nP(V).
If K is aline-pair, then lies on a tangent plane ¥ at some poinf/?]. Hence
it lies on the plane spanning a conic contained3nThe restriction of the pro-
jection map to this conic is of degree 2, and its image is a double line on the
projected Veronese surface. Two ramification points are mapped tpihgb
pointsof the surface. Finallyy could be orv3. The image of the projection is
a cubic surfaces in P4. All conics onVZ containingo are projected to lines on
S. So,S is a nonsingular cubic scroll iB* isomorphic to the blow-up o¥2,
hence ofP?, at one point. In our future notation for rational normal scrolls (see
8.1.1), itis the scrolb 4.

Let us now projecV2 further toP3. This time, the linear systefiv| defining
the projection is of dimension 3. Its apolar linear system is a pencil, a line
¢in |S%(EY)|. Suppose the apolar pencil does not interd&ctin this case
the pencil of conics does not contain a double line, hence contains exactly
three line-pairs. The three line-pairs correspond to the intersectidrwith
the cubic hypersurface Sg&/2). As we saw in above, this implies that the
image.S of the projection is a quartic surface with three double lines. These
lines are concurrent. In fact, a pencil of plane sectionS obntaining one of
the lines has residual conics singular at the points of intersection with the other
two lines. Since the surface is irreducible, this implies that the other two lines
intersect the first one. Changing the order of the lines, we obtain that each pair
of lines intersect. This is possible only if they are concurrent (otherwise they
are coplanar, and plane containing the lines intersect the quartic surface along
a cubic taken with multiplicity 2).

The projection of a Veronese surface from a line not intersestinig called
aSteiner quartic. Choose coordinatgst, t-, t3 such that the equations of the
singular lines aré; = t, = 0,t; = t3 = 0 andt, = t3 = 0. Then the equation
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of a Steiner surface can be reduced to the fagtniots + g4 = 0. By taking
the partial derivatives at the poifit, 0, 0, 0] and general points of the singular
lines, we find thay, is a linear combination of the monomigit2, +3¢2, 13t
Finally, by scaling the coordinates, we reduce the equation to the form

totitats + 115 + 1313 + t5t3 = 0. (2.1)
An explicit birational map fronP? onto the surface is given by

[0, y1,y2] — [(—yo+u1 +y2)27 (yo—y1+y2)2, (y0+y1—y2)2, (Yo+y1 +y2)2].

Next, we assume that the center of the projection is firietersectingV3.
In this case the image of the projection is a cubic scroll, the projection of
the rational normal scrolb; 4 to P2. There are two possibilities, the pencil
of conics defined by has two singular members, or one singular member, a
double line. This gives two possible cubic scrolls. We will give their equations
in the next Chapter.

ReplacingE with |EV| we can define the Veronese surfacéSA(E)|, the
image of the planéE| under the map given by the complete linear system of
conics. We leave to the reader to “dualize” the statements from above.

2.1.2 Polar lines

Let C be a nonsingular conic. For any point P2, the first polarP, (C) is a
line, thepolar line of a. For any line? there exists a unique pointsuch that
P,(C) =1. The pointa is called thepoleof . The pointa considered as a line
in the dual plane is the polar line of the poinwvith respect to the dual conic
C.

Borrowing terminology from the Euclidean geometry, we call three non-
collinear lines inP? atriangle. The lines themselves will be called thigles
of the triangle. The three intersection points of pairs of sides are called the
verticesof the triangle.

A set of three non-collinear lings, /5, ¢5 is called aself-polar trianglewith
respect ta” if each/; is the polar line of” with respect to the opposite vertex.
It is easy to see that it suffices that only two sides are polar to the opposite
vertices.

Proposition 2.1.1 Three linest; = V (I;) form a self-polar triangle for a
conicC = V(q) if and only if they form a polar triangle of'.

Proof Letl;N¢; = [vy]. If ¢ = 13 +13 + 13, thenD,, (q) = 2li, where
k # i,j. Thus a polar triangle of’ is a self-conjugate triangle. Conversely,
if V(Dy,,(q)) = €k, thenDy,, o, (q) = Day,,0,,;(q) = 0. This shows that



80 Conics and quadric surfaces

the conicC' is apolar to the linear system of conics spanned by the reducible
conics?; + ¢;. It coincides with the linear system of conics through the three
points/y, /5, /3 in the dual plane. Applying Propositiah3.5, we obtain that
the self-conjugate triangle is a polar triangle.

Of course, we can prove the converse by computation. Let

2(] = aogtg + antf —+ aggtg + 2a01t0t1 + 2a02t0t2 =+ 2a12t1t2 = 0

Choose projective coordinateslii such that; = V (¢;). Then

Proo(X)=b= V(%) = V(aooto + ao1ts + ag2t2),  (2.2)
Po1,0(X) =12 = V(%) = V(aints + aoito + aiats),
Plo,0,1)(X) =Ly = V(%) = V(agata + apato + aiat)

implies thaty = (¢ + 3 + t3). O

Remark2.1.1 Similarly one can define a self-polgt + 1)-hedron of a
quadric inP™ and prove that it coincides with its polén + 1)-hedron. The
proof of the existence of sugh +1)-hedron was the classical equivalent of the
theorem from linear algebra about reduction of a quadratic form to principal
axes.

LetQ = V(q) and@’ = V(q') be two quadrics in a projective spaké.
We say that) and@’ areharmonically conjugatéf the dual quadric of) is
apolar toQ’. In other words, ifD,v (¢’) = 0. In coordinates, if

q = atg +2Btoty +t1, ¢ =t +20'tot, + /13
theng" = ynZ — 28nom1 + an?, and the condition becomes
—288" 4+ ay' +a'y = 0. (2.3)

It shows that the relation is symmetric (one can extend it to quadrics in higher-
dimensional spaces but it will not be symmetric).

Of course, a quadric i&t! can be identified with a set of two pointsli, or
one point with multiplicity 2. This leads to the classical definitiorhafmoni-
cally conjugate{a, b} and{c, d} in P1. We will see later many other equivalent
definitions of this relation.

LetP! = |U|, wheredim U = 2. Sincedim A> U = 1, we can identify E|
with P(E). Explicitly, a point with coordinatefu, b] is identified with a point
[—b,a] in the dual coordinates. Under this identification, the dual quagfic
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vanishes at the zeros @f Thus, (2.3) is equivalent to the polarity condition

Dea(q) = Dap(q') = 0, (2.4)
whereV(q) = {a,b},V(¢') = {¢, d}.

Proposition 2.1.2 Let/¢y, 5, /5 be a triangle with vertices = /1 N4y, b =
¢1 N {3 andc = £5 N ¢3. Then the triangle is a self-polar triangle of a cortit
if and only ifa € P,(C) N P.(C) and the pairs of point§’ N ¢3 and (b, ¢) are
harmonically conjugate.

Proof Consider the pai€ N /3 as a quadrig in ¢5. We havec € P,(C), thus
Dy.(q) = 0. Restricting to/; and using (2.4), we see that the pdirs and
C N ¢3 are harmonically conjugate. Conversely[f.(¢) = 0, the polar line
P,(C) containsa and intersectgs at ¢, hence coincides witiac. Similarly,
P.(C) = ab. O

Any triangle inP? defines the dual triangle in the dual plaii&)V. Its sides
are the pencils of lines with the base point of one of the vertices.

Corollary 2.1.3 The dual of a self-polar triangle of a conit is a self-polar
triangle of the dual conic.

2.1.3 The variety of self-polar triangles

Here, by more elementary methods, we will discuss a compactification of the
variety VSP(¢3) of polar triangles of a nondegenerate quadratic form in three
variables.

Let C be a nonsingular conic. The group of projective transformatioi of
leavingC invariant is isomorphic to the projective complex orthogonal group

PO(3) =0(3)/(+1;) = SO(3).
It is also isomorphic to the group PSL(2ia the Veronese map
vy i P = P2 [to, th] > [t2, tote, t1).

Obviously, PQ acts transitively on the set of self-polar triangle€bfWe may
assume that’ = V(3 ¢?). The stabilizer subgroup of the self-polar triangle
defined by the coordinate lines is equal to the subgroup generated by permu-
tation matrices and orthogonal diagonal matrices. It is easy to see that it is
isomorphic to the semi-direct produ@/27Z)? x &3 = &,. Thus we obtain

the following.
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Theorem 2.1.4 The set of self-polar triangles of a nonsingular conic has a
structure of a homogeneous spaces;30) wherel is a finite subgroup iso-
morphic to&y.

A natural compactification of the variety of self-conjugate triangles of a non-
degenerate conigis the variety VSP(¢3) which we discussed in the previous
chapter. In Corollant.5.3, we have shown that it is isomorphic to the intersec-
tion of the Grassmannia® (3, 5) with a linear subspace of codimension 3. Let
us see this construction in another way, independent of the theory developed
in the previous chapter.

Let V2 be a Veronese surface BY. We viewP® as the projective space of
conics inP? andV? as its subvariety of double lines. A trisecant plané/af
spanned by three linearly independent double lines. A conie P° belongs
to this trisecant if and only if the corresponding three lines form a self-polar
triangle ofC'. Thus the set of self-polar triangles@fcan be identified with the
set of trisecant planes of the Veronese surface which co6tairhe latter will
also includedegenerate self-polar trianglesorresponding to the case when
the trisecant plane is tangent to the Veronese surface at some point. Projecting
from C to P* we will identify the set of self-polar triangles (maybe degenerate)
with the set of trisecant lines of the projected Veronese suNacf his is a
closed subvariety of the Grassmann variéy(P*) of lines inP*.

Let E be a linear space of odd dimensiih-1 and letG(2, E) := G1(|E|)
be the Grassmannian of lines ji|. Consider its Ricker embedding\” :
G(2,E) — G1(A*E) = |\’ E|. Any nonzerow € (A\>E)Y = N EVY
defines a hyperplang,, in | /\2 E|. Considew as alinear map,, : £ — EV
defined bya,, (v)(w) = w(v, w). The mapy, is skew-symmetric in the sense
that its transpose map coincides withy,,. Thus its determinant is equal to
zero, and Ker(g) # {0}. Letv, be a nonzero element of the kernel. Then for
anyv € E we havew(vg,v) = a,(v)(vg) = 0. This shows thaty vanishes
on all decomposable 2-vectotg A v. This implies that the intersection of
the hyperplandd,, with G(2, E) contains all lines which intersect the linear
subspacé,, = |Ker(«,)| C |E| which we call thepoleof the hyperpland,,.

Now recall the following result from linear algebra (see Exercise 2.1). Let
A be a skew-symmetric matrix of odd si2é + 1. Its principal submatrices
A; of size2k (obtained by deleting theth row and the-th column) are skew-
symmetric matrices of even size. Let Bt the pfaffians ofd; (i.e.det(A4;) =
Pf). Assume that rank(A) = 2for, equivalently, not all Rfvanish. Then the
system of linear equation$- = = 0 has one-dimensional null-space generated
by the vector(ay, . . ., asky1), Wherea; = (—1)"1Pf,.

Let us go back to Grassmannians. Suppose we havetaih-dimensional
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subspacéV in /\2 EY spanned by, . .., w,. Suppose that, for any € W,
we have ranky,, = 2k, or, equivalently, the pol§,, of H,, is a point. It follows
from the theory of determinant varieties that the subvariety

2
{Cuw e |/\EV| : coranka,, > i}

is of codimensior(;’) in |/\2 EV| (see [308], [380]). Thus, if < 4, a general
W will satisfy the assumption. Consider a regular ndap|IV| — | E| defined
by w — C,. If we takew = towo + - - - + tsws SO thatt = (to,...,ts) are
projective coordinate functions ifi¥’|, we obtain tha#® is given by2k + 1

principal pfaffians of the matrixl; definingw.

We shall apply the preceding to the case whan £ = 5. Take a general
3-dimensional subspad® of A\” EV. The map® : |W| — |E| = P*is
defined by homogeneous polynomials of degree 2. Its image is a projected
Veronese surfacg. Any trisecant line o5 passes through 3 points 6fwhich
are the poles of elemenis;, wo, w3 from W. These elements are linearly
independent, otherwise their poles lie on the conic image of a line dnd&uit
no trisecant line can be contained in a conic plane sectigh &fe consider
w € W as a hyperplane in the iiker spacé A* E|. Thus, any trisecant line
is contained in all hyperplanes defined Y. Now, we are ready to prove the
following.

Theorem 2.1.5 LetX be the closure irt7; (P*) of the locus of trisecant lines
of a projected Veronese surface. ThEris equal to the intersection ¢f (P*)
with three linearly independent hyperplanes. In particuléirjs a Fano 3-fold
of degree 5 with canonical sheaf = O (—-2).

Proof Aswe observed in above, the locus of poles of a general 3-dimensional
linear spacéV of hyperplanes in the Btker space is a projected Veronese
surfaceV and its trisecant variety is contained¥n = Nycw Hy N G1(PY).

So, its closureX is also contained i’’. On the other hand, we know that

is irreducible and 3-dimensional (it contains an open subset isomorphic to a
homogeneous spacé = SO(3)/&,). By Bertini's Theorem the intersection

of G1(P*) with a general linear space of codimension 3 is an irreducible 3-
dimensional variety. This proves thit= X. By another Bertini’s Theorem,

Y is smooth. The rest is the standard computation of the canonical class of the
Grassmann variety and the adjunction formula. It is known that the canonical
class of the Grassmannigh= G, (P™) of m-dimensional subspacesBf is

equal to

KG = Og(—n - 1). (2.5)
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By the adjunction formula, the canonical class¥of= G, (P*)NH;NHyN H3
is equal toO ¢ (—2). O

Corollary 2.1.6 The homogeneous spage= SO(3)/&, admits a smooth
compactificationX isomorphic to the intersection @f, (P*), embedded via
Plucker inP?, with a linear subspace of codimension 3. The boundéry X
is an anticanonical divisor cut out by a hypersurface of degree 2.

Proof The only unproven assertion is one about the boundary. To check this,
we use that the 3-dimensional grodp = SL(2) acts transitively on a 3-
dimensional varietyX minus the boundary. For any point& X, consider

the mapu, : G — X, g — g - z. Its fibre over the point is the isotropy sub-
groupG, of . The differential of this map defines a linear mag 7.(G) —
T.(X). When we letz vary in X, we get a map of vector bundles

prgx =g x X —T(X).

Now take the determinant of this map

3 3 3
/\QSZ/\QXX—)/\T(X):K;,

where K x is the canonical line bundle of. The left-hand side is the trivial
line bundle overX. The mapA® ¢ defines a section of the anticanonical line
bundle. The zeros of this section are the points where the differential of the map
{tg IS not injective, i.e., wherdim G, > 0. But this is exactly the boundary
of X. In fact, the boundary consists of orbits of dimension smaller than 3,
hence the isotropy of each such orbit is of positive dimension. This shows that
the boundary is contained in our anticanonical divisor. Obviously, the latter
is contained in the boundary. Thus we see that the boundary is equal to the
intersection of; (P*) with a quadric hypersurface.

O

Remark2.1.2 There is another construction of the variety VSB)gue to

S. Mukai and H. Umemura [438]. L&f; be the space of homogeneous binary
forms f (¢, t1) of degree 6. The group SL(#jas a natural linear representation
in Vs via linear change of variables. Lg¢t= tqt,(t3 — t}). The zeros of this
polynomials are the vertices of a regular octahedron inscribéd is P (C).
The stabilizer subgroup of in SL(2) is isomorphic to the binary octahedron
groupl’ = &,4. Consider the projective linear representation of Slifi3)5| =

P, In the loc. cit. it is proven that the closué of this orbit in|V;| is smooth
andB = X \ X is the union of the orbits oftjt;] and[tS]. The first orbit
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is of dimension 2. Its isotropy subgroup is isomorphic to the multiplicative
groupC*. The second orbit is one-dimensional and is contained in the closure
of the first one. The isotropy subgroup is isomorphic to the subgroup of upper
triangular matrices. One can also show tR&s equal to the image &' x P!

under a SL(2)-equivariant map given by a linear system of curves of bidegree
(5,1). ThusB is of degree 10, hence is cut out by a quadric. The image of the
second orbit is a smooth rational curveBnand is equal to the singular locus

of B. The fact that the two varieties are isomorphic follows from the theory
of Fano 3-folds. It can be shown that there is a unique Fano thregfelith
Pic(V) = Z31 Ky andK}, = 40. We will discuss this variety in a later chapter.

2.1.4 Conjugate triangles

LetC = V(f) be anonsingular conic. Given a triangle with sidg¥-, /5, the
poles of the sides are the vertices of the triangle which is calledahpigate
triangle. Its sides are the polar lines of the vertices of the original triangle. It
is clear that this defines a duality in the set of triangles. Clearly, a triangle is
self-conjugatef and only if it is a self-polar triangle.

The following is an example of conjugate triangles. Egetls, 3 be three
tangents ta@” at the point®, p2, p3, respectively. They form a triangle which
can be viewed as@rcumscribed triangle. It follows from Theoret1.1that
the conjugate triangle has vertices p-, ps. It can be viewed as anscribed
triangle. The linest| = psps3, ¢, = pips, ¢} = Dipz are polar lines with
respect to the verticeg, g2, g3 of the circumscribed triangle (see the picture).

43 4

g3 A
\%

l3
D1 9
lo
AN

—
q2 A

Figure 2.1 Special conjugate triangles

In general, let a sidé; of a triangleA intersect the coni€' at p; andp.
Then the vertices of the conjugate triangle are the intersection points of the
tangent ofC' at the pointw;, p;.

Two lines inP? are callecconjugatewith respect taC' if the pole of one of
the lines belongs to the other line. It is a reflexive relation on the set of lines.
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Obviously, two triangles are conjugate if and only if each of the sides of the
first triangle is conjugate to a side of the second triangle.

Recall the basic notion of projective geometry, fherspectivity. Two tri-
angles are callederspectivdrom a line (resp. from a point) if there exists a
bijection between their sets of sides (resp. vertices) such that the intersection
points of the corresponding sides (resp. the lines joining the corresponding
points) lie on the same line (resp. intersect at one point). The line is called the
line of perspectivityor perspectrix and the point is called theenter of per-
spectivityor perspector. Thd®esargues Theoreasserts that the properties of
being perspective from a line or from a point are equivalent.

Theorem 2.1.7(M. Chasles) Two conjugate triangles with no common vertex
are perspective.

Proof Chose coordinates such that the sidg¥,, ¢3 of the first triangle are
to = 0,t; = 0,t> = 0, respectively. Then the vertices of the first triangle
loNly =p = [1,0,0],[1 Nl3 =py = [0, 1,0] and/; N{3 = p3 = [0,07 1].
Let
a b ¢
A=1|b d e (2.6)
c e f

be the symmetric matrix defining the conic. Then the lines p&laf the point

p; is given by the equationsty + 8t + vt2 = 0, where(a, 3,7) is thei-th
column of A. The vertices we hav& N ¢; = (0,¢,—b), s N ¢, = (e,0,—b)
and/; N ¢; = (e,—c,—0). The condition that the points are on a line is the
vanishing of the determinant

0 ¢ =b
det{e 0 —=b
—c 0
Computing the determinant, we verify that it indeed vanishes. O

Now let us consider the following problem. Given two triang{és, >, ¢3 }
and{¢}, ¢4, ¢4} without common sides, find a coni@ such that the triangles
are conjugate to each other with respeaf'to

Sincedim \® E = 1, we can define a natural isomorphispy* EV| — | E|.
Explicitly, it sends the lingl Al’] to the intersection poirt] N [I']. Suppose the
two triangles are conjugate with respect to a cafiidet |[E| — |EV| be the
isomorphism defined by the conic. The compositigf EV| — |E| — |EV|
must send; A ¢; to ¢}.. Let?; = [I;],¢; = [I!]. Choose coordinates, t1, t2 in
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E and letX, Y be the3 x 3-matrices withj-row equal to coordinates &f and

¢}, respectively. Of course, these matrices are defined by the triangles only up
to scaling the columns. It is clear that thecolumn of the inverse matrix !

can be taken for the coordinates of the pdint ¢; (here: # j # k). Now we

are looking for a symmetric matrid such thatd X —! = *Y". The converse is

also true. If we find such a matrix, the rows &fandY would represent two
conjugate triangles with respect to the conic defined by the matrix some
coordinates of the sides of the two triangles to fix the matri¢eg. Then we

are looking for a diagonal invertible matri® such that

QA ='YDX isasymmetric matrix. (2.7)

There are three linear conditions; = a;; for a matrix A = (a;;) to be
symmetric. So we have three equations and we also have three unknowns, the
entries of the matrixD. The condition for the existence of a solution must be
given in terms of a determinant whose entries depend on the coordinates of the
sides of the triangles. We identify andi’ with vectors inC? and use the dot-
product inC3 to get the following three equations with unknowxis As, A3

Aly -l = Aaly -1 =0
Al -l —Agls -1, =0
Aaly -1l — Aslg - 1 = 0.

The matrix of the coefficients of the system of linear equations is equal to

Lol —l-l, 0
M=, 0 -l
0 bl -l

The necessary condition is that
det M = (I3 - 1) (L - 15)(la - 13) — (l2 - 1) (I - 13) (I3 - 15) = 0. (2.8)

We also need a solution with nonzero coordinates. It is easy to check (for
example, by taking coordinates wheXeor Y is the identity matrix), that the
existence of a solution with a zero coordinate implies that the triangles have a
common vertex. This contradicts our assumption.

Note that condition (2.7) is invariant with respect the action of GJ_éiice
any G € GL(E) transformsX,Y to GX,GY, and hence transform4 to
tG AG which is still symmetric. Taking, = tg,lo = t1,l3 = t2, we easily
check that condition (2.8) is equivalent to the condition that the two triangles
with sides defined by, I5,13 andiy, 1}, 1} are perspective from a line. Thus
we obtain the following.



88 Conics and quadric surfaces

Corollary 2.1.8 Two triangles with no common side are conjugate triangles
with respect to some conic if and only if they are perspective triangles.

Taking the inverse of the matri# from (2.7), we obtain thak ~' D~ 1t B!
is symmetric. It is easy to see that thieh column of X —! can be taken for the
coordinates of the side of the triangle opposite the vertex defined by-tthe
column of X. This shows that the dual triangles are conjugate with respect to
the dual quadric defined by the matrix 1. This proves Desargues’ Theorem,
we used before.

Theorem 2.1.9(G. Desargues) Two triangles are perspective from a point if
and only if they are perspective from a line.

Let C be a nonsingular conic arndbe a point in the plane but not . The
projection fromo defines an involutior, on C with two fixed points equal to
the setP,(C) N C. This involution can be extended to the whole plane such
that o and the polar lineP, is its set of fixed points. To show this, we may
assumeC' is the conicV (tot2 — %), image of the Veronese map : P! —

C, [uo, u1] — [ud, uouy, u?]. We identify a pointr = [z, 21, 22] in the plane
with a symmetric matrix
P (560 wl)
Ty T2

so that the conic is given by the equatidet X = 0. Consider the action of
G € SL(2) onP? which sendsX to !GXG. This defines an isomorphism
from PSL(2)to the subgroup of PGL(3gaving the conic” invariant. In this
way, any automorphism of' extends to a projective transformation of the
plane leavingC' invariant. Any nontrivial element of finite order in PGL(3)
is represented by a diagonalizable matrix, and hence its set of fixed points
consists of either a line plus a point, or 3 isolated points. The first case occurs
when there are two equal eigenvalues, the second one when all eigenvalues are
distinct. In particular, an involution belongs to the first case. It follows from the
definition of the involutionr that the two intersection points &f, (C') with C
are fixed under the extended involutidrSo, the point, being the intersection
of the tangents t¢’ at these points, is fixed. Thus the set of fixed points of the
extended involutiort is equal to the union of the linB, (C') and the poinb.

As an application, we get a proof of the following Pascal’'s Theorem from
projective geometry.

Theorem 2.1.10 Letp,,...,ps be the set of vertices of a hexagon inscribed
in a nonsingular conia”. Then the intersection points of the opposite sides
DiDit1 N Pir3Dita, Wherei is taken modul@, are collinear.
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Proof A projective transformation oP! is uniquely determined by the im-
ages of three distinct points. Consider the transformation of the cofien-
tified with P! by a Veronese map) which transformsto p;,3,i = 1,2, 3.

This transformation extends to a projective transformatiofhthe whole plane
leavingC' invariant. Under this transformation, the pairs of the opposite sides
DiDirs are left invariant, thus their intersection point is fixed. A projective
transformation with three fixed points on a line, fixes the line pointwise. So, all
three intersection points lie on a line. O

The line joining the intersection points of opposite sides of a hexagon is
called thePascal line. Changing the order of the points, we get 60 Pascal lines
associated with 6 points on a conic.

One can see that the trianglg with sidesp;pz, p1ps, p2ps and the triangle
A, with sidespsps, P3p1, P5pe are in perspective from the Pascal line. Hence
they are perspective from the pole of the Pascal line with respect to the conic.
Note that not all vertices of the triangles are on the conic.

Dually, we obtairBrianchon’s Theorem.

Theorem 2.1.11 Letp,,...,ps be the set of vertices of a hexagon whose
sides touch a nonsingular coni€. Then the diagonal®;p;13,i = 1,2,3
intersect at one point.

We leave to the reader to find two perspective triangles in this situation.

Figure 2.2 Pascal’'s Theorem

We view a triangle as a point i{iP?)3. Thus the set of ordered pairs of conju-
gate triangles is an open subset of the hypersurfa@y} x (P?)% = (P?)6
defined by equation (2.8). The equation is multi-linear and is invariant with
respect to the projective group PGL(&¢ting diagonally, with respect to the
cyclic group of order 3 acting diagonally on the prod(@t)? x (P?)3, and
with respect to the switch of the factors in the prod(%)® x (P?)3. It is
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known from the invariant theory that the determinant of the matfixconsid-
ered as a section of the shefdf ((P?)¢, O%°) must be a linear combination
of the products of the maximal minofsjk) of the matrix whose columns are
the six vectordy, ], 12,15, 13, 15 such that each columns occurs in the prod-
uct once. We use thaiet M = 0 expresses the condition that the intersection
points¢; N ¢; are collinear.

Fix a basis inA?(E) to define a natural isomorphism

2 2
/\(/\E) — E, (v1 Avg,wy Awsg) — (v1 Avg Awy)wa — (01 Avg Aws)w.

This corresponds to the familiar identity for the vector product of 3-vectors
(v1 X v2) X (w1 Awa) = (V1 X V2 X wy)ws — (V1 X Vg X Wa)ws.

If we apply this formula ta®" instead ofF, we obtain that the line spanned by
the points/1N¢} andland, has equatiodet (I, 11, 12)15 —det(l1, 1], 15)la = 0.
The condition that this line also passes through the intersection faint;, is

det(l3, 14, det (11, 1}, 1)l — det(ly, 1, 1)l2)

= det(ll, /1, lg) det(lg, lé, 1/2) — det(ll, lll, lé) det(lg, lé, lg) =0.
This shows that the determinant in (2.8) can be written in symbolic form as
(12,34, 56) := (123)(456) — (124)(356). (2.9)

Remark2.1.3 LetX = (P?)Pl be the Hilbert scheme d? of 0-cycles of
degree 3. It is a minimal resolution of singularities of the 3d symmetric product
of P2. Consider the open subset &f formed by unordered sets of 3 non-
collinear points. We may view a point 6f as a triangle. Thus any nonsingular
conicC defines an automorphisps: of U of order 2. Its set of fixed points is
equal to the variety of self-polar triangles 6f The automorphism of/ can
be viewed as a birational automorphismXof

One can also give a moduli-theoretical interpretation of the 3-dimensional
GIT-quotient of the varietyX modulo the subgroup of A(P?) leaving the
conic C' invariant. Consider the intersection of the sides of the triangle with
verticesa, b, c. They define three pairs of points on the conic. Assume that
the six points are distinct. The double cover of the conic branched over six
distinct points is a hyperelliptic curv8& of genus 2. The three pairs define
3 torsion divisor classes which generate a maximal isotropic subspace in the
group of 2-torsion points in the Jacobian variety of the cu\see Chapter 5).
This gives a point in the moduli space of principally polarized abelian surfaces
together with a choice of a maximal isotropic subspace of 2-torsion points. It
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is isomorphic to the quotient of the Siegel sp&¢g modulo the grouf’y(2)

of matrices(é g) € Sp(4,Z) such thatC' = 0 mod 2.

2.2 Poncelet relation

2.2.1 Darboux’s Theorem

Let C be a conic, and IeF = {/;, ¢, 3} be a circumscribed triangle. A conic
C" which hasT as an inscribed triangle is called tRencelet related conic.
Since passing through a point impose one condition, we bavePoncelet
related conics corresponding to a fixed triang@leVarying 7', we expect to
getoo® conics, so that any conic is Poncelet related'twith respect to some
triangle. But surprisingly this is wrong! Darboux’s Theorem asserts that there
is a pencil of divisor®; + p2 + p3 such that the triangleB with sides tangent
to C at the point®, p2, p3 define the same Poncelet related conic.

We shall prove it here. In fact, we shall prove a more general result, in which
triangles are replaced with-polygons. Ann-polygonP in P2 is an ordered
set ofn. > 3 points(py, . .., p,) in P2 such that no three poinis, p; 1, pi+2
are collinear. The pointg; are theverticesof P, the linesp;, p;+1 are called
the sidesof P (herep,.1 = p1). The number of.-gons with the same set of
vertices is equal ta!/2n = (n — 1)!/2.

We say thatP circumscribes a nonsingular cori¢if each side is tangent
to C. Given any ordered sét, . . ., g, ) of n points onC, let¢; be the tangent
lines toC at the pointgy;. Then they are the sides of thegon P with vertices
pi = 4iNLlig1,i = 1,....,n (lpy1 = £1). Then-gon P circumscribesC.
This gives a one-to-one correspondence betwegans circumscribing’ and
ordered sets of points onC'.

Let P = (p1,...,pn) be an-gon that circumscribes a nonsingular cofiic
A conic S is calledPonceletn-relatedto C with respect taP if all points p;
lieonC.

Let us start with any two conic§' and S. We choose a point; on S and
a tangent; to C' passing througlp; . It intersectsS at another poinp,. We
repeat this construction. If the process stops aftaeps (i.e. we are not getting
new pointsp;), we get an inscribed-gon in S which circumscribe€. In this
caseS is Poncelet related t6¢'. The Darboux Theoremvhich we will prove
later says that, if the process stops, we can construct infinitely magons
with this property starting from an arbitrary point 6h
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Consider the following correspondence©nx S:
R ={(x,y) € C xS :7Fyistangenttd atx}.

Since, for anyr € C the tangent t@' atz intersectsS at two points, and, for
anyy € S there are two tangents t@ passing througly, so we get that is
of bidegreg2, 2). This means if we identify, S with P!, thenR is a curve of
bidegreg(2, 2). As is well-knownR is a curve of arithmetic genus 1.

Lemma 2.2.1 The curveR is nonsingular if and only if the coniaS" and
S intersect at four distinct points. In this cask,is isomorphic to the double
cover ofC (or S) ramified over the four intersection points.

Proof Consider the projection maps : R — S. This is a map of degree 2.
A branch pointy € S is a point such that there only one tangentpassing
throughy. Obviously, this is possible only i € C'. It is easy to see thakt is
nonsingular if and only if the double coveg : R — S =2 P! has four branch
points. This proves the assertion. O

Note that, if R is nonsingular, the second projection map : R — C
must also have 4 branch points. A pointe C' is a branch point if and only
if the tangent ofC at x is tangent toS. So we obtain that two conics intersect
transversally if and only if there are four different common tangents.

Take a poin{z[0], y[0]) € R and let(z[1],y[1]) € R be defined as follows:
y[1] is the second point o' on the tangent ta:[0], z[1] is the point onC'
different fromz[0] at which a line througly[1] is tangent taC'. This defines a
mapTc s : R — R. This map has no fixed points dhand hence, if we fix a
group law onR, is a translation maf, with respect to a point. Obviously, we
get ann-gon if and only ift, is of ordern, i.e. the order of: in the group law
is n. As soon as this happens we can use the automorphism for constructing
n-gons starting from an arbitrary poiit[0], y[0]). This is Darboux’s Theorem
which we have mentioned in above.

Theorem 2.2.2(G. Darboux) LetC andS be two nondegenerate conics in-
tersecting transversally. Theriand S are Poncelet-related if and only if the
automorphismr¢ s of the associated elliptic curvg is of ordern. If C and

S are Poncelet related, then starting from any point € C' and any point
y € S there exists am-gon with a vertex afy and one side tangent 10 at y
which circumscribe€’ and inscribed inS.

In order to check explicitly whether two conics are Poncelet related one
needs to recognize when the automorphisfy is of finite order. Let us
choose projective coordinates such thds the Veronese conigt, —t2 = 0,
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the image ofP! under the magt, t1] — [t3, tot1,t3]. By using a projective
transformation leaving” invariant we may assume that the four intersection
pointsps, p2, p3, p4 Of C' and.S are the images of the poinfs1, co, a. Then

R is isomorphic to the elliptic curve given by the affine equation

y? =x(z—1)(z — a).
The conicS belongs to the pencil of conics with base points. . . , py
(tota — t3) + Mty (atg — (1 + a)ty +t2) = 0.

We choose the zero point in the group law Brio be the poin{z[0], y[0]) =
(p4,p4) € C' x S. Then the automorphismat: s sends this point téx[1], y[1]),
where

y[1] = Aa, A\(1 +a) +1,0), 2[1] = ((a+1)2\2,2a(1 + a)\, 4a?).

Thusz[1] is the image of the poin(l, a+1)/\) € P! under the Veronese map.
The pointy[1] corresponds to one of the two roots of the equation

o 2a 2a 1 2a
v= (a+1)/\((a+1)/\ - )((aJrl))\

—a).

So we need a criterion characterizing poifts++/z(x — 1)(z — a)) of fi-

nite order. Note that different choice of the sign corresponds to the involution
x — —z of the elliptic curve. So, the order of the points corresponding to two
different choices of the sign are the same. We have the following result of A.
Cayley.

Theorem 2.2.3(A. Cayley) LetR be an elliptic curve with affine equation

whereg(z) is a cubic polynomial with three distinct nonzero roots. yet
>, iz’ be the formal powers Taylor expansionypfn terms of the local
parameterz at the pointp = (0, 1/g(0)). Thenp is of ordern > 3 if and only
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Co C3 oo Cly1
C3 Cyq oo Cly2
=0, n=2k+1,
Ck+1 Ck42 ... C2k
C3 Cyq N Cl+1
Cyq Cs N Cl+2 0 o
= n =
)
Ck+1 Cg42 ... C2k—1

Proof Let oo be the point at infinity of the affine curvg® — g(z) = 0.

The rational functionz (resp.y) has pole of order 2 (resp. 3) ab. If n =

2k + 1, the rational functiond, z, ..., 2%, y, xy, ..., "'y form a basis of

the linear spacé/’(C, Oc(no)). If n = 2k, the same is true for the functions
La,...,2%y,zy, ..., 252y, A pointp = (0, c) is an-torsion point if and
only if there is a linear combination of these functions which vanishes at this
point with ordern. Sincex is a local parameter at the pointwe can expand

y in a formal power serieg = > ;- ckz”. Let us assume = 2k + 1, the
other case is treated similarly. We need to find some numfets. ., asx)

such that, after plugging in the formal power series,
a0+a1x+...+akxk+ak+1y+...+a§k_1

is divisible byz2**1, This gives a system of linear equations

a,;+ak+1c,;+...+ak+1+ico :O, ’L':(),...,k?,
a2kC2+i + G2k—1€345 + - + agr1Cp+144 =0, 9=0,..., bk — 1.
The firstk + 1 equations allow us to eliminatg, . . . , ax. The lastk equations
have a solution fofa1, - .., as) if and only if the first determinant in the
assertion of the Theorem vanishes.
O
To apply the Proposition we have to take
2a =1+ 2a n 2a
Q= ——— = — =a+ ——.
@+ X’ CES M (a+ DX

Let us consider the variety,, of pairs of conicgC, S) such thatS is Pon-
celetn-related toC'. We assume that’ and S intersect transversally. We al-
ready know thai®,, is a hypersurface i?> x P°. Obviously,P,, is invariant
with respect to the diagonal action of the group SL(&gting on the space of



2.2 Poncelet relation 95

conics). Thus the equation @, is an invariant of a pair of conics. This in-
variant was computed by F. Gerbar@bp]. It is of bidegred17'(n), 1T(n)),
whereT'(n) is equal to the number of elements of orddn the abelian group
(Z/nZ)?.

Let us look at the quotient oP,, by PSL(3). Consider the rational map
B P5 x P> — (P?)*) which assigns tdC, S) the point setC' N S. The
fibre of 5 over a subseB3 of 4 points in general linear position is isomor-
phic to an open subset &' x P!, whereP! is the pencil of conics with
base pointB. Since we can always transform suéhto the set of points
{[1,0,0],]0,1,0],[0,0,1],[1,1, 1]}, the group PSL(3gacts transitively on the
open subset of such 4-point sets. Its stabilizer is isomorphic to the permutation
groupS, generated by the following matrices:

0 -1 0 1 0 O 1 0 -1
1 0 0], 00 -1], 0 -1 -1
0 0 1 01 0 0o 0 -1

The orbit spaceP,, /PSL(3) is isomorphic to a curve in an open subset of
P! x P!/&,, where&, acts diagonally. By considering one of the projection
maps, we obtain tha®,, /PSL(3)is an open subset of a coverBf of degree

N equal to the number of Ponceletrelated conics in a given pencil of conics
with 4 distinct base points with respect to a fixed conic from the pencil. This
number was computed by F. Gerbardi [268] and is equéﬂt(}n). A modern
account of Gerbardi’s result is given in [26]. A smooth compactification of
P,,/PSL(3)is the modular curvel°(n) which parameterizes the isomorphism
classes of the pairfs, e¢), whereR is an elliptic curve and is a point of order
nin R.

Proposition 2.2.4 LetC and .S be two nonsingular conics. Consider each
n-gon inscribed inC' as a subset of its vertices, and also as a positive divisor
of degreen on C. The closure of the set afgons inscribed irC' and circum-
scribing S is either empty, or @_, i.e. a linear pencil of divisors of degree
n.

Proof First observe that two polygons inscribed(hand circumscribingy
which share a common vertex must coincide. In fact, the two sides passing
through the vertex in each polygon must be the two tangentS péssing
through the vertex. They interseCtat another two common vertices. Contin-
uing in this way, we see that the two polygons have the same set of vertices.
Now consider the Veronese embedding of C = P! in P". An effective
divisor of degreen is a plane section of the Veronese cutig = v, (P).

Thus the set of effective divisors of degreen C can be identified with the
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dual projective spacéP™). A hyperplane inP")" is the set of hyperplanes
in P™ which pass through a fixed point i?*. The degree of an irreducible
curve X C (P™)V of divisors is equal to the cardinality of the set of divisors
containing a fixed general point d.. In our case it is equal to 1. O

2.2.2 Poncelet curves and vector bundles

Let C and S be two Poncelet-related conics in the plari®* = |E|. Recall
that this means that there exispointsp, ..., p, onC such that the tangent
lines¢; = T,, (C) meetonS. One can drop the condition théltis a conic. We
say that a plane curvg of degreen — 1 is Poncelet relatedo the conicC if
there existn points as above such that the tangent€'tat these points meet
ons.

We shall prove an analog of Darboux’s Theorem for Poncelet related curves
of degree larger than 2. First, we have to remind some constructions in the
theory of vector bundles over the projective plane.

Let P! = |U| for some vector spacE of dimension 2 and®? = |V| for
some vector spackg of dimension 3. A closed embedding: P' — P2 has
the image isomorphic to a nonsingular conic, a Veronese curve. This defines
an isomorphism

EY = H(|E|,Oyp/(1)) = H(|U|, Oy(2)) = $*(UY).

Its transpose defines an isomorphighaz S?(U). This gives a bijective corre-
spondence between nonsingular conics and linear isomorplismsS?(U).
Also, sincedim \* U = 1, a choice of a basis ip\”* U defines a linear isomor-
phismU = UV. This gives an isomorphism of projective spafié$ = |U|"
which does not depend on a choice of a basig\hU. Thus a choice of a
nonsingular conic inE| defines also an isomorphisi&"Y | — |S%(U)| which
must be given by a nonsingular conic|ii¥|. This is of course the dual conic.

Fix an isomorphisnP? = |S?(U)| defined by a choice of a con@ in P2.
Consider the multiplication mag?(U) ® S"~2(U) — S™(U). It defines a
rank 2 vector bundlé,, - onP? whose fibre at the point = [¢] € |S%(U)| is
equal to the quotient spa&® (U)/qS™~2(U). One easily sees that it admits a
resolution of the form

0— S"2(U)(~1) — S"(U) — Sp.c — 0, (2.10)

where we identify a vector spagéwith the vector bundle*V, wherer is the
structure map to the point. The vector bundlec is called theSchwarzen-
berger vector bundlassociated to the coniC. Its dual bundle has the fibre
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over a pointz = [¢q] equal to the linear space
(S™(U)/qS""2(U)Y) = {f € 8™(U") : Dy(f) = 0}. (2.11)

EmbeddingUV| in |S™(UY)| by means of the Veronese map, we will identify
the divisor of zeros of with a divisorV (¢) of degree 2 on the Veronese curve
R, C |S™(UVY)|, or, equivalently, with a 1-secant @t,. A hyperplane con-
taining this divisor is equal t& (¢g) for someg € S"~2(U). Thus the linear
space (2.11) can be identified with the projective spa¥i(@f). In other words,
the fibres of the dual projective bund&fﬁc are equal to the secants of the
Veronese curvey,,.

It follows from (2.10) that the vector bundl®, - has the first Chern class
of degreen — 1 and the second Chern class is equatte — 1)/2. Thus we
expect that a general section 8f « hasn(n — 1)/2 zeros. We identify the
space of sections &,, ¢ with the vector spacd™(U). A point[s] € |S™(U))|
can be viewed as a hyperplafg in |S™(U")|. Its zeros are the secants®f,
contained inH. SinceH, intersectsR,, atn pointspy, ..., p,, any 1-secant
D;p; is a 1-secant contained ;. The number of such 1-secants is equal to
n(n —1)/2.

Recall that we can identify the conic witly| by means of the Veronese
mapvs : [U| — |S2(U)|. Similarly, the dual coni€" is identified with|UV|.

By using the Veronese map, : |UY| — [S™(UY)|, we can identifyC"”
with R,,. Now a point onR,, is a tangent line on the original coni¢, hence
n pointspy, ..., p, from above are the sides of ann-gon circumscribing
C. A secantp;p; from above is a point if?? equal to the intersection point
¢i; = ¢; N ¢;. And then(n — 1)/2 pointsg;; represent the zeros of a section
of the Schwarzenberger bundfg ¢.

For any two linearly independent sections s, their determinang; A so
is a section of/\2 Sp,c and hence its divisor of zeros belongs to the linear
system Oz (n— 1)|. When we consider the penci, s2) spanned by the two
sections, the determinant of each member \s; + uss has the zeros on the
same curvé/ (s; A sq) of degreem — 1.

Let us summarize this discussion by stating and proving the following gen-
eralization of Darboux’s Theorem.

Theorem 2.2.5 LetC be a nonsingular conic if?? and Sp,c be the asso-
ciated Scwarzenberger rank 2 vector bundle o®ér Thenn-gons circum-
scribing C' are parameterized by (S, «)|. The vertices of the polygd,
defined by a sectioncorrespond to the subscherfi¢s) of zeros of the section

s. A curve of degrea — 1 passing through the vertices corresponds to a pencil
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of a sections o§,, ¢ containings and is equal to the determinant of a basis of
the pencil.

Proof A sections with the subscheme of zerd§(s) with ideal sheafl )
defines the exact sequence

0— O]pz i)Sn,C —>Iz(n— ].) — 0.

A section ofZz (n — 1) is a plane curve of degree— 1 passing througtt(s).
The image of a sectiohof S,, ¢ in H°(Zz(n — 1)) is the discriminant curve

s A t. Any curve defined by an element fromi(Z(n — 1)) passes through
the vertices of the-gonIl, and is uniquely determined by a pencil of sections
containings. O

One can explicitly write the equation of a Poncelet curve as follows. First
we choose a basi, & of the spacd/ and the basigd, g‘lgl, o & of
the spaceS®(U). The dual basis ir6™(U") is ((¢)ta~ "t} )o<i<a. Now the
coordinates in the plang?(U)| aretZ, 2tot1,t3, SO a point in the plane is a
binary conicQ = a&? + 2b&p&1 + c£3. For a fixedr = [Q] € |S?(U)|, the
matrix of the multiplication mag”~2(U) — S™(U),G — QG is

a
2b a
c 2b
K(z) = c
a
2b

c

A section ofS,, ¢ is given by f = Y7 el € S™(U). Its zeros is the
set of pointse such that the vectar of the coefficients belongs to the column
subspace of the matriX’(z). Now we vary f in a pencil of binary forms
whose coefficient vectat belongs to the nullspace of some matixof size
(n — 1) x (n+ 1) and rankn — 1. The determinant of this pencil of sections
is the curve in the plane defined by the degree 1 polynomial equation in
x = [a,b, |

det(K(z) - A) =0.
Note that the coni€' in our choice of coordinates I8(t? — tots).

Remark2.2.1 Recall that a section &, - defines an-gon in the plane
|S2(U)| corresponding to the hyperplane sectidn N R,,. Its vertices is the
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scheme of zerog (s) of the sectiors. Let : X (s) — P? be the blow-up of
Z(s). For a genera$, the linear system of Poncelet curves througfls) em-
beds the surfac& (s) in |S™(U")| with the image equal té/;NSeg (R,,). The
exceptional curves of the blow-up are mapped onto the secaRtswhich are
contained inH,. These are the secamt®;, whereH; N R,, = {p1,...,Dn}-

The linear system defining the embedding is the proper transform of the lin-
ear system of curves of degree— 1 passing througH;n(n — 1) points of
Z(s). This implies that the embedded surfak€s) has the degree equal to
(n—1)?—In(n—1) = 1(n—1)(n—2). Thisis also the degree of the secant
variety Se¢(R,,). For example, take = 4 to get that the secant variety of
R, is a cubic hypersurface if* whose hyperplane sections are cubic surfaces
isomorphic to the blow-up of the six vertices of a complete quadrilateral.

2.2.3 Complex circles

Fix two points in the plane and consider the linear system of conics passing
through the two points. It maps the planeRd with the image equal to a
nonsingular quadric) = V(g). Thus we may identify each conic from the
linear system with a hyperplane#t, or using the polarity defined by, with

a point. When the two points are the poifitsl, +4] in the real projective plane
with the line at infinityt, = 0, a real conic becomes a circle, and we obtain that
the geometry of circles can be translated into the orthogonal geometry of real
3-dimensional projective space. In coordinates, the rationallPAap > P?3 is

given by

[to,t1,t2] — [w0, @1, T2, 3] = [t + 13, tot1, tota, t2)].
Its image is the quadric
Q = V(zors — 23 — x3).
Explicitly, a point[v] = [ag, a1, a2, a3] € P? defines theomplex circle
S(v) : ap(t? +t3) — 2tg(anty + aata) + asts = 0. (2.12)

By definition, its center is the point = [, a1, as), its radius squarde? is
defined by the formula

AZR? = o2 + a3 — apas = g(a). (2.13)

Let us express the property that two circles are tangent to each other. It
applies to complex circles as well.
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Proposition 2.2.6 Let [v], [w] be two points inP?, and S(v), S(w) be two
complex circles corresponding to planesRkh which are polar to the points
with respect to the quadri@ = V' (¢). Then the two circles touch each other if
and only if

(v,v)(w,w) — (v,w)* =0, (2.14)
where(v, w) denotes the bilinear form associated to the quadratic form

Proof Let¢ =V (\v+ uw) be the line spanned by the poitit$ and[w]. Via
polarity, it corresponds to a pencil of plane&ih The preimages of two planes
are tangent if and only if the pencil contains a plane tangent to the qu@dric
Dually this means that the lingis tangent ta?. This is equivalent to that the
binary form

4O + o) = N2(0,0) + 2(0, )Mt + 22 (w, w)

has a double root. Of course, this happens if and only if (2.14) holds.
O

Note that relation (2.14) is of degree 2«#randw. If we identify the space
of circles withP3, this implies that the pairs of touching complex circles is a
hypersurface i3 x P? of bidegreg2, 2). It is easy to see that the diagonal of
P3 x P3 is the double locus of the hypersurface.

Fix two complex irreducible circleS = S(v) andS’ = S(w) and consider
the variety R of complex circlesS(z) touching$S and S’. It is equal to the
guartic curve, the intersection of two quadratic cofggsandQ g, of conics
touchings ands’,

(v,v)(z,x) — (v,2)* = (w,w)(z,r) — (w,z)*> =0

Since the singular points of these cofdsand|w] satisfy these equations, the
quartic curve has two singular points. In fact, it is the union of two conics given
by the equations

(v,v)(w, z) £ v/ (w,w)(v,z) = 0.

The two conics intersect at the poirjt§ such that(x,z) = 0 and(v,z) =
(v,w) = 0. The first condition means that] is thenull-circle, i.e.aZR? = 0

in (2.13). It is the union of two lines connecting one if the two intersection
points of S and.S’ outside the line at infinityg = 0 with the two intersection
points at infinity. In the case whe$iand.S’ touch each other the whole pencil
generated by andS’ becomes a component of the quatrtic curve entering with
multiplicity 2. So, the two cone§s and@Qs: touch each other along the line
spanned by and.S’.



2.2 Poncelet relation 101

Theorem 2.2.7(J. Steiner) Suppose, aftem steps,S,, is equal toS;. Then,
starting from arbitrary conicS] touchingS andS’, we get a sequence of concis
Si,...,S), = S1 tangent toS and.S” with S}, tangent toS),_ .

Proof Let R be one of the conic components of the variety of complex circles
touchingS andS’. Let

X ={(51,52) € R x R: SjtouchesS,}.

Itis a curve of bidegreé4, 4) on R x R = P! x P!, The fibre of its projection

to the first factor over a point represented by a cahiconsists of 3 points.
One them is at the diagonal and enters with multiplicity 2. This implies that
X consists of the diagonal taken with multiplicity 2 and the residual ciitve
of bidegree(2, 2). The fibre of the first projectioX — R over.S; consists

of complex circles which touck and.S; and also toucty’ and.S;. It consists

of the intersection of two quartic curves, each has a double line as component.
The double lines are represented by the pencil generatesl &yd S; and

the pencil generated by’ and S;. The only way when the fibre consists of
one point is wher®; is one of the two null-lines touching and S’ at their
intersection point not at infinity. In this case the quadpig; of circles touching

S is the double plane of circles passing through the singular poifit.oFhus

we see that the residual cur¥ehas only two branch points for each of the two
projectionsX — R. Since its arithmetic genus is equal to 1, it must consist
of two irreducible curves of bidegre@, 1) intersecting at two points, b. If

we fix one of the component®;, then the mag.Sy, S2) — (S2,53) is the
automorphism of; \ {a, b} = C*. The sequenc#, S, S, . . . terminates if
and only if this automorphism is of finite order. As soon as it is, we can start
from anyS; and obtain a finite sequen¢#y, . .., S, = S1). O

Remark2.2.2 We followed the proof from [26]. Whe$i and S’ are concen-

tric real circles, the assertion is evident. The general case of real conics can be
reduced to this case (see [243], [546]). Poncelet’'s and Steiner’'s Theorems are
examples of gorismwhich can be loosely stated as follows. If one can find
one object satisfying a certain special property then there are infinitely many
such objects. There are some other poristic statements for complex circles:
Emch’ Theorem and theig-zag theorerdiscussed in [26].
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2.3 Quadric surfaces

2.3.1 Polar properties of quadrics

Many of the polar properties of conics admit extension to nonsingular quadrics
in higher-dimensiondP™. For example, aelf-polar(n + 1)-hedronis defined

as a collection of, + 1 ordered hyperplane€g(l;) in general linear position
such that the pole of each plah&!;) is equal to the intersection point of the
remaining hyperplanes. Similarly to the case of conics, one proves that a self-
polar(n + 1)-hedron is the same as a polar+ 1)-hedron of the quadric.

The definition of the conjugate: + 1)-hedra is straightforward extension of
the definition of conjugate triangles. We say that two simpléxemd’ are
mutually polarwith respect to a quadri€ if the poles of the facets df’ are
vertices ofI". This implies that the images étdimensional faces df’ under
the polarity defined by are the oppositén — k)-dimensional facets of’.

The condition (2.7) extends to any dimension. However, it does not translate to
a single equation on the coefficients of the linear forms defining the polyhedra.
This time we have a systemofn-+1)/2 linear equations with+1 unknowns

and the condition becomes the rank condition.

We adopt the terminology of convex geometry to call the set ef 1 lin-
early independent hyperplanesienplex The intersection of a subset bhy-
perplanes will be called & — k)-dimensionaface. Ifk = n, this is avertex,
if k =n — 1, this is anedge, ifn. = 0 this is afacet.

The notion of perspectivity of triangles extends to quadrics of any dimen-
sion. We say that two simplexes guerspectiveérom a pointo if there is a
bijection between the sets of vertices such that the lines joining the corre-
sponding vertices pass through the peintVe say that the two simplexes are
perspective from a hyperplane if this hyperplane contains the intersections of
corresponding facets. We have also an extension of Desargues’ Theorem.

Theorem 2.3.1(G. Desargues) Two simplexes are perspective from a point
if and only if they are perspective from a hyperplane.

Proof Without loss of generality, we may assume that the first simpléx
the coordinate simplex with verticgs = [e;] and it is perspective from the
pointe = [e] = [1,...,1]. Letg; = [v;] be the vertices of the second simplex
Y. Then we have,;, = e + \;e; for some scalars,;. After subtracting, we
obtainv; —v; = Ase; — Aje;. Thus any two edgesp; andg;g; meet at a point
r;; Which lies on the hyperplan® = V(}_7 A%ti). Since the intersection
of the facet of; opposite to the point; with the facet of2; opposite to the
point ¢;, contains all points-;; with ¢, j # k, and they span the intersection,
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we get that the two simplexes are perspective fi@mlhe converse assertion
follows by duality. O

Remark2.3.1 Asremarked [574], p.252, the previous assertion is a true space
generalization of the classical Desargues’s Theorem. Other generalization ap-
plies to two space triangles and asserts that the perspectivity from a point im-

plies that the intersection points of the corresponding sides (which automati-

cally intersect) are collinear.

Letb, : E — EY be an isomorphism defined by a nonsingular quadric
Q = V(q). For any linear subspadeof E, the subspack, (L)~ of E is called
polar of L with respect tay. It is clear that the dimensions of a subspace and
its polar subspace add up to the dimensiohAjf Two subspacea andA’ of
the same dimension are callednjugateif the polar subspace of intersects
N

These classical definitions can be rephrased in terms of standard definitions
of multi-linear algebra. Let\ (resp.A’) be spanned by, ..., [vg] (resp.
[w1], ..., [wg]). For any two vectors,w € E, let (v, w), denote the value of
the polar bilinear fornb, of ¢ on (v, w),.

Lemma 2.3.2 A andA’ are conjugate with respect 1 if and only if

(Ulawl)q (U2vw1>q s (Ukvwl)q
(1, w2)q  (v2,w2)q .. (Uk,w2)q

et . . . . =
(Ulawk)q (U27wk)q ('Uknwk)q

Proof Letb, : E — EY be the linear isomorphism defined by the polar
bilinear form of¢. The linear funtiong,(v1),...,b,(vx) form a basis of a
k-dimensional subspack of £V whose dualL* is a (n — k)-dimensional
subspace oF. It is easy to see that the spanswef. .., v, andw,..., wg
have a common nonzero vector if and only.if intersects nontrivially the lat-
ter span. The condition for this is that, under the natural identifica(\i’f)ﬁEV)
and\"(E), we have

bg(v1) A ..o Abg(vg)(wi A ... Awy) = det((vs, w;)q) = 0.
O

It follows from the Lemma that the relation to be conjugate is symmetric.

From now on, until the end of this section, we assumerthat3.
A tetrahedron irfP? with conjugate opposite edges is callsalf-conjugate.
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Itis clear that a polar tetrahedron@fis self-conjugate, but the converse is not
true.

Let T be a tetrahedron with verticgs = [v1],...,ps = [v4]. SUppOSE
that two pairs of opposite edges are conjugate with respect to some quadric
Q. ThenT is self-conjugate (see [601], B. Ill, p. 135, or [584], 7.381). The
proof is immediate. Suppose the two conjugate pairs of edgedarg bzp1)
and(p1ps, p2pa). For brevity, let us denotey;, v;), by (ij). Then(13)(24) —
(14)(23) = 0,and(12)(34)—(14)(23) = 0 imply, after subtraction,13)(24)—
(12)(34) = 0. This means that the remaining p&ifps, pzp3) iS conjugate.

We know that two conjugate triangles are perspective. In the case of quadrics
we have a weaker property expressed on the following Chasles’ Theorem.

Theorem 2.3.3 [M. Chasles] Letl" and7T” be two mutually polar tetrahedra
with respect to a quadri§). Suppose no two opposite edge$'@fre conjugate.
Then the lines joining the corresponding vertices belong to the same ruling of
lines of some nonsingular quadrig’.

Proof Letpq,p2, ps3, ps be the vertices of” andqy, g2, ¢3, g4 be the vertices
of T”. In the following{s, j, k, I} = {1, 2, 3,4}. By definition,g; is pole of the
plane spanned by;, p;, pr. and the matching between the verticeg;is— ¢;.
Suppose the edggp; is not conjugate to the opposite edge;. This means
that it does not intersect the edg@;. This implies that the lineg;q; andp;q;
do not intersect. By symmetry of the conjugacy relation, we also obtain that the
linesprqgr andp;q; do not intersect. Together this implies that we may assume
that the first three line, = p;¢; are not coplanar.

Without loss of generality, we may assume that the first tetrahe@iran
the coordinate tetrahedron. Ldt= (a,;) be a symmetric matrix defining the
quadric@ and letC = adj(A) = (c;;) be the adjugate matrix defining the
dual quadric. The coordinates of facetsIofire columns ofd = (a;;). The
coordinates of the intersection point of three facets defined by three columns
A;, Aj, Ay, of A are equal to the colum@’,, of C', wherem # 1,5, k. Thus
a general point on the line generated by the pging, 0, 0] has coordinates
[\, pere, €13, c14), @nd similar for other three lines. Recall that by Steiner’s
construction (see [295], p. 528) one can generate a nonsingular quadric by two
projectively equivalent pencils of planes through two skew lines. The quadric
is the union of the intersection of the corresponding planes. Apply this con-
struction to the pencil of planes through the first two lines. They projectively
matched by the condition that the corresponding planes in the pencils contain
the same poinfes;, c32, A, ¢41] on the third line. The two planes from each
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pencil are defined by the equations

to t1 to t3
1
det 0 0 0
Acii €12 Ci3 Cia
€31 € A cm

= t1c13C34 + t2(crac32 — c12¢34) — t3c13C32 + A(f3¢12 — tic14) = 0,

to tq to t3
0 1 0 0

€21 C22 C23 C24

€31 €32 A ca;

det

= toCagCaa + ta(CoaC31 — Ca1C34) — tacazcsr + A(tzcar — ticoa) =0,
Eliminating \, we find the equation of the quadric

(c12¢34 — caac13)(castots + cratita) + (c13¢24 — c14c23)(Cr2tats + caatoty)

+(cr4c23 — c12¢34)(C13t1t3 + Coatote) = 0.

By definition the quadric contains the first three lines. It is immediately checked
that a general poirjty, ca2, c43, A] on the fourth line lies on the quadric.C]

The following result follows from the beginning of the proof.

Proposition 2.3.4 LetT andT’ be two mutually polar tetrahedra. Assume
that T (and hencel”) is self-conjugate. Thef® and 7’ are in perspective
from the intersection points of the lines joining the corresponding vertices and
perspective from the polar plane of this point.

One can think that the covariant quadr constructed in the proof of
Chasles’ Theoren2.3.3 degenerates to a quadratic cone. Counting parame-
ters, it is easy to see that the pairs of perspective tetrahedra depend on the
same number 19 of parameters as pairs of tetrahedra mutually polar with re-
spect to some quadric. It is claimed in [21], v. 3, p.45 that any two perspective
tetrahedra are, in fact, mutually polar with respect to some quadric. Note that
the polarity condition imposes three conditions, and the self-conjugacy con-
dition imposes two additional conditions. This agrees with counting constants
(5=24—19).

One can apply the previous construction to the problem of writing a quadratic
form ¢ as a sum of 5 squares of lines forms. Suppose we have two self-
conjugate tetrahedr@d and 7’ with respect to a quadri§ which are also
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mutually polar with respect t@). By Proposition2.3.4, they are in perspec-
tive. Choose coordinates such tHétis the coordinate tetrahedron and let
A = (ai;)o<i,j<3 be a symmetric matrix definin@. We know that the equa-
tions of facetsH; of 7" are V(Z] o aijt;). SinceT is self-conjugate, the
intersection linedy; N H; meet the coordinate lingg = t; = 0. This means
that the equationgsgts + asots = 0 andasits + agits = 0 have a honzero
solution, i.e.aspaz1 = asiasg. Slmllarly, we get thatigass = aspai2 and
ag1a32 = ageaszy. Using the symmetry of the matrix, this implies that all the
six products are equal. Henagsa13/a12 = assaps/ao2 = apsais/apr are all
equal to some number. Then the equation of the quadrics can be written as a
sum of five squares

Za“tQ +20) " agtit;

0<i<j<3

2 2
= Z (ai; — aas)t? + (ass — a)t3 +a” Zalgt + at3)? = 0.
=0

Here we assume that is general enough. The center of perspective of the two
tetrahedra is the pole of the plal€agsto + a1sti + assta + ats).

The pentad of points consisting of the vertices of a self-conjugate tetrahe-
dron with regard to a quadri@ and the center of the perspectiviiyof the
tetrahedron and its polar tetrahedron forse#f-conjugate pentathnd penta-
hedron in the dual space). This means that the pole of each plane spanned by
three vertices lies on the opposite edge. As follows from above, the pentad of
points defined by a self-conjugate tetrahedron defines a polar polyhedébn of
consisting of the polar planes of the pentad.

Proposition 2.3.5 LetH; =V(l;),i=1...,5, form a nondegenerate polar
pentahedron of a quadriQ = V (¢). Letpy,. .., ps be the poles of the planes
V' (1;) with respect tay). Then the pentag;, . .., ps is self-conjugate and is a
polar polyhedron of the dual quadric.

Proof Letx; be the pole ofif; with respect ta). Then the pole of the plane
spanned bwz,x],xk is the pointz,;, = H; N H; N H,. We may assume
thatqg = Zl ol?. ThenP, , (Q) belongs to the penciP generated by the
remaining two planeél,., H,. When we vary a point along the edggz, the

polar plane of the point belongs to the perRilFor one of the points, the polar
plane will be equal to the plan®,,,, (Q), hence this points coincide withy .

By definition, the pentad is self-conjugate.

The second assertion can be checked by straightforward computation. Since
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the polar pentahedron is nondegenerate, we can choose coordinates such that
the polar pentahedron @ is equal to equal to the union of the coordinate
tetrahedron and the plan&>_ ¢;). We can write

3 3
=0

=0
for some non-zero scalaks. For anyv = (ag, a1, as,a3) € C*, we have

3
Dy(g) = ) (a+ Nia)t;
1=0
wherea = Z?:o a;. Let&; = a+ \;a; be considered as coordinates in the dual
space. We can expressin terms of¢; by solving a system of linear equations
with matrix

N 101 1
1 X 1 1
1 1 X 1
1 1 1 X
Write a; = L;(&o,...,&3) = Z?:o cij&;, where(c;;) is the inverse matrix.

Letv; = (coj, €14, €24, c35). The dual quadric consists of poif(, &1, &2, €3)
such thaty(ap, a1, a2, asz) = 0. This gives the equation of the dual quadric

3 3
QY =V()_ ALi(¢0,&1,62,6)° + (O Li(€0, 61,6, 6))").
1=0 1=0
So, we see that the dual quadric has the polar polyhedron defined by the planes
V(L:), V(> L;). We have

3
D’l);-‘ (Q) = Z(ALal + a)cutz = t]aj = Oa 17 27 3a
=0
henceDs- .- (g) = >_t;. This checks that the points of the pentad are poles of
the planes of the polar pentahedroripf O

Remark2.3.2 LetIlq,...,IIy be sets ofm-hedra inP",n > 1, with no
common elements. Suppose that these polyhedra considered as hypersurfaces
in P™ of degreem (the unions of their hyperplanes) belong to the same pencil.
It is easy to see that this is equivalent to that the first twvbedrall,, I1, are
perspective from each hyperplaneldf, . . ., II;. The open problem:

What is the maximal possible number N (n,m) of such polyhedra?

By taking a general hyperplane, we g€tn,m) < N(2,m). It is known
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that N(2,m) > 3 and N(2,2),N(2,3) = 4. It was proven by J. Stipins
[596] (see also [660]) thal (2, m) < 4 for all m and it is conjectured that
N(2,m) =3form # 3.

In the next chapter we will consider the case= 2,m = 3,N = 4. In
the casen = 3,m = 4, N = 3, the three tetrahedra are callddsmic. The
configuration of the 12 planes forming three desmic tetrahedra has a beautiful
geometry. A general member of the pencil generated by three desmic tetra-
hedra is adesmic quartic surface. It has 12 singular points and represents a
special embedding of a Kummer surface of the product of two isomorphic el-
liptic curves. We refer to [341] for some modern treatment of desmic quartic
surfaces. We will encounter them later in Chapter 9.

2.3.2 Invariants of a pair of quadrics

Let@, = V(f) andQ> = V(g) be two quadrics if®™ (not necessary nonsin-
gular). Consider the pendi (¢, f + t1¢) of quadrics spanned ¥ andS. The
zeros of the discriminant equatidn = discr(4 f + t19) = 0 correspond to
singular quadrics in the pencil. In coordinatesf.if are defined by symmetric
matricesA = (a;;), B = (b;;), respectively, therD = det(tgA + t1B) is
a homogeneous polynomial of degreen + 1. Choosing different system of
coordinates replaces, B by Q7 AQ, QT BQ, whereQ is an invertible matrix.
This replacesD with det(Q)2D. Thus the coefficients ab are invariants on
the space of pairs of quadratic forms @A with respect to the action of the
group SL(n+ 1). To computeD explicitly, we use the following formula for
the determinant of the sum of twa x m matricesX + Y

det(X +Y) = Z Aiy s (2.15)

1<ii<..<ix<n
whereA;, . ;, is the determinant of the matrix obtained frakh by replac-
ing the columnsX; , ..., X;, with the columnsy;,,...,Y;, . Applying this
formula to our case, we get

D=0ty + ) 0ty + 0, tn ! (2.16)
=1

where®y = det A,0,,.1 = det B, and
@k: Z det(Al...le...Bjk...An+1),
1< <... < <n+1

wheredA = [A; ... Ap41], B =[B; ... B,1]. We immediately recognize the
geometric meanings of vanishing of the first and the last coefficierits dhe
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coefficient®g (resp.©.,,+1) vanishes if and only i€); (resp.Q-) is a singular
conic.

Proposition 2.3.6 Let @, and Q> be two general quadrics. The following
conditions are equivalent.

(i) ©1=0;
(i) Q- is apolar to the dual quadri®y;
(i) @1 admits a polar simplex with vertices @py.

Proof First note that
O, = Tr(Badj(4)). (2.17)

Now adj(A)is the matrix defining)y and the equivalence of (i) and (ii) be-
comes clear.

Since®; are invariants ofQ1, Q2), we may assume thgt, = V(>_7 7).
Suppose (iii) holds. Since the orthogonal groupCbfcts transitively on the
set of polar simplexes af);, we may assume that the coordinate simplex is
inscribed inQ2. Then the point$l, 0,...,0],...,[0,...,0, 1], must be orQs.
Hence

Q2=V( Y aytity),

0<i<k<n

and the conditior{s) is verified.

Now suppose (i) holds. Choose coordinates such@hat V («a;t?). Start
from any point onQ» but not on@;, and choose a projective transformation
that leave%), invariant and sends the point to the pgint= [1,0,...,0]. The
guadric@- transforms to a quadric with equation in which the coefficient at
z3 is equal to 0. The polar line gf; with respect taR; is V(3_;_, ait;). It
intersectsy)- along a quadric of dimensiom — 2 in the hyperplang, = 0.
Using a transformation leaving (¢y) and @ invariant, we transforn®, to
another quadric such that the paint= [0, 1,0, . .., 0] belongs td/ (¢y) N Q5.
This implies that the coefficients of the equation@f att2 andt? are equal
to zero. Continuing in this way, we may assume that the equatid) a$ of
the forma,,,,t2 + zgﬁqgn ai;tit; = 0. The trace condition ig,,«, ' = 0.

It implies thata,, = 0 and hence the point,; = [0,...,0,1] is onQ>.
The triangle with vertice$l,0,...,0],...,[0,...,0,1] is a polar simplex of
@1 which is inscribed irQs. O

Observe that, if); = V(3 t?), the trace condition means that the cofic
is defined by a harmonic polynomial with respect to the Laplace operator.
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Definition 2.3.1 A quadric@); is calledapolarto a quadricQ)- if one of the
equivalent conditions in Propositiop.3.6 holds. If ), is apolar to @, and
vice versa, the quadrics are calledutually apolar.

The geometric interpretation of other invariafs is less clear. First note
that a quadratic forng on a vector spac& defines a quadratic form*q on
the space\" E. Its polar bilinear form is the map" b, : A"E — \" EV =
(A" E)Y, whereb, : E — EV is the polar bilinear form of. Explicitly, the
polar bilinear form\” b, is defined by the formula

(Vi Ao Ak, wr AL A wg) = det(bg(vs, wy))

which we used already in Lemn2a3.2.

If A is the symmetric matrix defining, then the matrix defining\’C qis
denoted byd(®) and is called thé-th compound matrinf A. If we index the
rows and the columns of(*) by increasing sequenceé = (ji,...,5,) C
{1,...,n + 1}, then the entryAf,’f}, of A®) is equal to the(.J, J’)-minor
Ay of A. Replacing eacm(ji)], with the minor Az 7 taken with the sign
(—1)5(“/), we obtain the definition of thadjugatek-th compound matrix
adj*)(A4) (not to be confused with adj(®)). The Laplace formula for the
determinant gives

A®adf*)(4) = det(A)1.

If Ais invertible, thenA®) is invertible and A®))~! = L_adj(A*)).
We leave to the reader to check the following fact.

Proposition 2.3.7 Let@; = V(q),Q2 = V(¢') be defined by symmetric
matricesA, B and letA*) and B(*) be theirk-th compound matrices. Then

Ok(A, B) = Tr(AT1=Padj(B®)).

Example2.3.1 Letn = 3. Then there is only one new invariant to interpret.
This is @, = Tr(A®adj(B®. The compound matriced® and B are
6 x 6 symmetric matrices whose entries &e 2-minors of A and B taken
with an appropriate sign. Let = (a;;). The equation of the quadric defined
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by A is given by thebordered determinant

agop ao1 @o2 aopz &0 "o
ajg a1 a2 aiz &1 M
agy a1 aze azz &2 M2
azg az1 azz asz &3 13
o & & & 000
m m m2 n3 0 0

The equation is called thine-equationor complex equatiomf the quadric
@ defined by the matri. If we take the minorg;n; — &;n; as Plicker co-
ordinates in| A> C*|, the line equation parameterizes linesFih which are
tangent to the quadri@. This can be immediately checked by considering a
parametric equation of a ling&y, &1, €2, &3) + (o, 11, 12,13 ), inserting it in
the equation of the quadric and finding the condition when the corresponding
guadratic form in\, 1 has a double root. In matrix notation, the condition is
(EAE)(nAn) — (£An)? = 0 which can be easily seen rewritten in the form the
vanishing of the bordered determinant. The intersection of the quadric defined
by the matrixA(?) with the Klein quadric defining the Grassmannian of lines
in P3 is an example of guadratic line complexXWe will discuss this and other
guadratic line complexes in the last Chapter of the book.

Take@ = V(3 t2). Then the bordered determinant becomes equal to

3 3 3
OO n) = &m)>= > EGmi—&m)’= > 1}
0 i=0 =0

i= 0<i<j<3 0<i<j<3

det =0. (2.18)

wherep;; are the Ricker coordinates. We have

©2(A,B) =Tr(Ba) = > (bijbji — biiby;)-
0<i<j<3

The coordinate ling; = t; = 0 touches the quadriQ, whenb;;b;; —b;ib;; =
0. Thus©, vanishes when a polar tetrahedror¢afhas its edges touchin@s.

It is clear that the invariant®;, are bihomogeneous of degrégn + 1 — )
in coefficients ofA and B. We can consider them as invariants of the group
SL(n+1) acting on the product of two copies of the space of square symmetric
matrices of sizen + 1. One can prove that the + 1 invariants©; form a
complete system of polynomial invariants of two symmetric matrices. This
means that the polynomia3; generate the algebra of invariant polynomials
(see [631], p. 304).

One can use the invarian@ to express different mutual geometric proper-
ties of two quadrics. We refer to [584] for many examples. We give only one
example.
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Theorem 2.3.8 Two quadrics touch each other if and only if
J=D(Oy,...,0,41) =0,

whereD is the discriminant of a binary form of degreet 1.

Proof This follows from the description of the tangent space of the discrimi-
nant hypersurface of quadratic forms. The line defining the pencil of quadrics
generated by the two quadrics does not intersect the discriminant hypersurface
transversally if and only if one of quadrics in the pencil is of coran®, or one

of the quadrics has a singular point at the base locus of the pencil (see (1.45)).
In the case of pencils the first condition implies the second one. Thus the con-
dition for tangency is that one of the roots of the equatiet{to A +t; B) = 0

is a multiple root. O

The invariantJ is called thetact-invariantof two quadrics. Note that two
quadrics touch each other if and only if their intersection has a singular point.

Corollary 2.3.9 The degree of the hypersurface of quadric®intouching a
given nonsingular quadric is equal ton + 1).

Proof This follows from the known property of the discriminant of a binary
form Z?:o a;td'ti. If we assign the degre@l — i, i) to each coefficiend;,

then the total degree of the discriminant is equati(d — 1). This can be
checked, for example, by computing the discriminant of the fagn§ + a,t¢
which is equal tad%alad™! (see [264], p. 406). In our case, ea®h has
bidegree(n + 1 — k, k), and we get that the total bidegree is equaliton +
1),n(n + 1)). Fixing one of the quadrics, we obtain the asserted degree of the
hypersurface. O

2.3.3 Invariants of a pair of conics

In this case we have four invariany, ©1, ©5, ©3 which are traditionallyd
enoted byA, ©,©’, A/, respectively.
The polynomials

(Ro, R1, Ra, R3) = (00/, AN, 0" A, ©3A)

are bi-homogeneneous of degrg8s3), (3,3), (6,6), (6,6). They define a
rational magP® x P° --» P(1, 1,2, 2). We have the obvious relatiaR} ?; —
RoR3 = 0. After dehomogenization, we obtain rational functions

X =Ry/R% Y = Ry/Ry, Z = R3/R2

1 The terminology is due to A. Cayley, taction = tangency.
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such thatX = Y Z. The rational functions
Y =0'A/0% Z=0A"/6"7

generate the field of rational invariants of pairs of conics (see [583], p. 280).
The polynomialsRy, R;, Rs, R3 generate the algebra of bihomogeneous in-
variants onP® x P> with respect to the diagonal action of SL(@nd the GIT-
quotient is isomorphic to the rational surfagétit; — tot3) in the weighted
projective spac®(1, 1,2, 2). The surface is a normal surface with one singular
point [0, 1,0, 0] of type A,. The singular point corresponds to a unique orbit
of a pair of nonsingular conic&”, S) such thatC"V is apolar toS and SV is
apolar toC. It is represented by the pair

2+t +t3 =0, t3+et?+eX3=0,

wheree = €27/3, The stabilizer subgroup of this orbit is a cyclic group of
order 3 generated by a cyclic permutation of the coordinates.

Recall that the GIT-quotient parameterizes minimal orbits of semi-stable
points. In our case, all semi-stable points are stable, and unstable points cor-
responds to a pairs of conics, one of which has a singular point on the other
conic.

Using the invarianta\, ©, ©’, A’, one can express the condition that the two
conics are Poncelet related.

Theorem 2.3.10 LetC and.S be two nonsingular conics. A triangle inscribed
in C and circumscribingS exists if and only if

02 — 40N = 0.

Proof Suppose there is a triangle inscribedirand circumscribings. Ap-
plying a linear transformation, we may assume that the vertices of the triangle
are the point$l, 0, 0], [0, 1,0] and[0, 0, 1] andC' = V (tgt1 + tote + t1t — 2).

LetS =V (g), where

g = atd +bt? + ct3 + 2dtoty + 2etots + 2ft1 1. (2.19)
The triangle circumscribeS when the points1, 0, 0], [0, 1, 0], [0, 0, 1] lie on
the dual conicS. This implies that the diagonal entries— f2, ac—e?, ab— d?

of the matrix adj(B are equal to zero. Therefore, we may assume that

g = &t + B2 + 4212 — 2aftot; — 2aytots — 2067t to. (2.20)
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0 1 1 0 206y 2ayp3?
@’:Tr( 1 0 1]-[2a84? 0 26va? ):4aﬂ7(a+ﬂ+v),
1 10 2073  2B7va? 0

a?  —af —ay -1 1 1
o=Tr({-ap # -pr|[1 -1 1|)=—(a+s+"
—ay =By 11 -1
A = —4(apy)?.

This checks tha®’? — 40A’ = 0.

Let us prove the sufficiency of the condition. Take a tangentdinto S
intersectingC' at two pointse, y and consider tangent linés, /3 to S passing
throughz andy, respectively. The triangle with sidés, /5, {3 circumscribes
S and has two vertices ofi. Choose the coordinates such that this triangle
is the coordinate triangle. Then, we may assume @hat V (at? + 2tot; +
2t1ts + 2tgte) andS = V(g), whereg is as in €.20). Computingd’? — 40A’
we find that it is equal to zero if and onlydf= 0. Thus the coordinate triangle
is inscribed inC'. O

Darboux’s Theorem is another example of a poristic statement. with respect
to the property of the existence of a polygon inscribed in one conic and cir-
cumscribing the other conic. Another example of a poristic statement is one of
the equivalent properties of a pair of conics from Proposifich6: Given two
nonsingular conicg’ and S, there exists a polar triangle 6f inscribed inS,
or, in other words(' is apolar toS.

Recall from Theoreni.1.4that any projective automorphism Bft = | E|
is a composition of two polarities, v : |E| — |EV|.

Proposition 2.3.11 Let C and S be two different nonsingular conics and
g € Aut(PP?) be the composition of the two polarities defined by the conics.
Thenyg is of order 3 if and only iC and .S are mutually apolar.

Proof Let A, B be symmetri@ x 3 matrices corresponding t6¢ andS. The
conicsC and S are mutually apolar if and only if Tr(AB') = Tr(BA™1)
= 0. The projective transformation is given by the matrixX = AB~1.
This transformation is of orde} if and only if the characteristic polynomial
|X — 3| of the matrixX has zero coefficients & \?. Since Tr(X) = 0,
the coefficient a\? is equal to zero. The coefficient atis equal to zero if
and only if Tr(X~!) = Tr(BA~') = 0. Thusg is of order 3 if and only if
Tr(AB~Y) =Tr(BA™1) = 0. O
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Remark?2.3.3 Itis immediate that any set of mutually apolar conics is linearly
independent. Thus the largest number of mutually apolar conics is equal to 6.
The first example of a set of 6 mutually apolar conics was given by F. Gerbardi
[266] The following is a set of mutually apolar conics given by P. Gordan
[283]:

t2 + et + *t5 = 0,

to 4+ €*t] + et3 = 0,
r2(t3 + t3 4 13) + 7V3(toty + tota + tita) =0,
r?(t5 + 17 +13) + rvV/3(—tot1 — tota + t1ts) =0,
r?(t5 + 11 + 13) + rV3(—toty + tota — tita) =0,

r2(tg + 13 +13) + rV/3(tot1 — tota — t1ts) =0,

wheren = €27/3 = %. These six quadrics play an important role

in the theory of invariants of thealentiner group, the subgroup of PGL(4)
isomorphic to the alternating grofs. All such subgroups are conjugate in
PGL(4) and one can choose one that acts in such way that the six mutually
apolar conics given by the above equations are permuted. The gradmits

a central extensiot¥ with the center of ordes which lift the action ofG to a
linear action inC3. The group( is acomplex reflection groum C? with the
algebra of invariants generated by three polynomials of degrees 6, 12 and 30.
The invariant of degree 6 is the sum of cubes of the 6 mutually apolar quadratic
forms. The invariant of degree 12 is their product. The invariant of degree 30
is also expressed in terms of the 6 quadratic forms but in a more complicated
way (see [267], [283]). We refer t®F3] for further discussion of mutually
apolar conics.

Consider the set of polar triangles@finscribed inS. We know that this set
is either empty or of dimensior 1. We consider each triangle as a set of its 3
vertices, i.e. as an effective divisor of degree 3%n

Proposition 2.3.12 The closureX of the set of self-polar triangles with re-
spect toC which are inscribed irf, if not empty, is a3, i.e. a linear pencil of
divisors of degree 3.

Proof First we use that two self-polar triangles with respectt@nd in-
scribed inS which share a common vertex must coincide. In fact, the polar
line of the vertex must interseét at the vertices of the triangle. Then the as-
sertion is proved using the argument from the proof of Propos&igmt. [

Note that a generali contains 4 singular divisors corresponding to ramifi-
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cation points of the corresponding m&p — P!. In our case these divisors
correspond to 4 intersection points@fand.S.
Another example of a poristic statement is the following.

Theorem 2.3.13 LetT andT” be two different triangles. The following as-
sertions are equivalent:

(i) there exists a coni® containing the vertices of the two triangles;
(i) there exists a coni& touching the sides of the two triangles;
(iii) there exists a coni€' with polar trianglesT” andT”.

Moreover, when one of the conditions is satisfied, there is an infinite number
of triangles inscribed irb, circumscribed around, and all of these triangles
are polar triangles olC.

Proof (iii)< (ii) According to Propositionl.3.4, a coniaC' admitsT" as a

polar triangle if the conics in the dual plane containing the sides of the triangle
are all apolar taC. If T"and7” are polar triangles of’, then the two nets of
conics passing through the sides of the first and the second triangle intersect
in the 4-dimensional space of apolar conics. The common conic is the conic
Y from (ii). Conversely, ifY exists, the two nets contain a common conic and
hence are contained in a 4-dimensional space of conics in the dual plane. The
apolar conic is the coni€' from (jii).

(iii)< (i) This follows from the previous argument applying Proposition
2.1.3.

Let us prove the last assertion. Suppose one of the conditions of the Theorem
is satisfied. Then we have the coni€sS, ¥ with the asserted properties with
respect to the two trianglés, 7’. By Proposition2.3.12, the set of self-polar
triangles with respect t6' inscribed inS is ag}. By Propositior2.2.4, the set
of triangles inscribed ir% and circumscribing: is also agi. Two gi's with 2
common divisors coincide. O

Recall from Theoren2.3.8that the condition that two coni€s and.S touch
each other is

27TAZA? — 1800'AA +4A0"3 + 4N 03 — ©'?0% = 0. (2.21)

The variety of pairs of touching conics is a hypersurface of bide¢fe®)
in P> x P, In particular, conics touching a given conic is a hypersurface of
degree 6 in the space of conics. This fact is used for the solution of the famous
Apollonius problenin enumerative geometry:find the number of nonsingular
conics touching five fixed general conics (see [253], Example 9.1.9).
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Remark2.3.4 Choose a coordinate system such @hat V (¢2 + 2 + 3).
Then the condition tha$' is Poncelet related t6' with respect to triangles is
easily seen to be equal to

c% —cic3 =0,
where
det(A — tI3) = (=) + c1(—t)® + ca(—t) + c3

is the characteristic polynomial of a symmetric matdxdefining S. This is
a quartic hypersurface in the space of conics. The polynomiats, cs gen-
erate the algebra of invariants of the group SCd8ling on the spack =
SZ((C3)Y). If we use the decompositidil = H, & Cq, whereg = 3 +t3 +3
and H, is the space of harmonic quadratic polynomials with respecf, to
then the first invariant corresponds to the projectidn e Cq — Cgq. Let
vy : P — P2 be the Veronese map with image equaitoThen the pull-back
map

V¥V = HY(P?, 0p2(2)) — H(P', Op:1 (4))

defines an isomorphism of the representaignof SO(3) with the represen-
tation S*((C?)V) of SL(2). Under this isomorphism, the invariantsandcs
correspond to the invariantsand" on the space of binary quartics from Ex-
amplel1.5.2. In particular, the fact that a harmonic conic is Poncelet related
to C is equivalent to that the corresponding binary quartic admits an apolar
binary quadric. Also, the discriminant invariant of degree 6 of binary quartics
corresponds to the condition that a harmonic conic touches

2.3.4 The Salmon conic

One call also look focovariantsor contravariantsof a pair of conics, that is,
rational map§Op: (2)| x |Oz(2)] - |Op:(d)] or |Op2(2)] x |[Op2(2)] -~
|Opz (d)|¥ which are defined geometrically, i.e. not depending on a choice of
projective coordinates.

Recall the definition of theross ratioof four distinct ordered pointg; =
[ai, bJ onP!
(p1 — p2)(p3 — pa)
(p1 — p3)(p2 — pa)’

R(p1p2; p3pa) = (2.22)

where
a; bl

Pi —pj = det <aj bj> = CLibj — ajbi.

It is immediately checked that the cross ratio does not take the valleso.
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It does not depend on the choice of projective coordinates. It is also invariant
under a permutation of the four points equal to the product of two commuting
transpositions. The permutatidh2) changesk to —R/(1 — R) and the per-
mutation(23) changesk to 1/R. Thus there are at most 6 possible cross ratios
for an ordered set of 4 points

1 1 R R—-1
Bpl B iR -1 =&

The number of distinct cross ratios may be reduced to three or two. The first
case happens if and only if one of them is equal-tio(the other ones will be
2 and1/2). The unordered set of four points in this case is callé@anonic
quadruple. The second case happens wReatisfiesR>+R+1 =0, i.e.Ris
one of two cubic roots of 1 not equal to 1. In this case we legganharmonic
quadruple.

If we identify the projective space of binary forms of degree 2 with the pro-
jective plane, the relatior2(3) can be viewed as a symmetric hypersurféce
of bidegree(1, 1) in P? x P2, In particular, it makes sense to speak about har-
monically conjugate pairs of maybe coinciding points. We immediately check
that a double point is harmonically conjugate to a pair of points if and only if
it coincides with one of the roots of this form.

We can extend the definition of the cross ratio to any set of points no three
of which coincide by considering the cross ratios as the point

R = [(p1 — p2)(p3 — pa), (p1 — p3)(p2 — pa)] € P (2.23)

It is easy to see that two points coincide if and onlRif= [0, 1], [1, 1], [1, 0].
This corresponds t& = 0, 1, co.

Two pairs of points{pi,p2} and {q1,¢2} are harmonically conjugate in
sense of definition (2.3) if and only iR(p1q1;¢2p2) = —1. To check this,
we may assume thaf, p, are roots off = at3 + 2Btgt; + vt andqy, g are
roots ofg = o/t3 + 28'tot1 + +'t3, where, for simplicity, we may assume that
a, o’ # 0 sothat, in affine coordinates, the roetgy of the first equations sat-
isfy t +y = —28/«, zy = v/« and similarly the roots of the second equation
a' y satisfya’ +y' = —26'/a/, 2’y =+'/a’. Then

/ !
Rmx’; / :(x—x)(y—y):_l
) = ey
if and only if
(x =2y —y) + (@ —y)@ —y) = (x+y)@ +¢) 22y — 22"y
A4Sy 2 o ey 265
T aal o o oo’ e
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So we see that the two pairs of roots form a harmonic quadruple if and only
(2.3) holds.

The expressiony’ + o/~ — 284" is an invariant of a pai(f, g) of binary
guadratic forms. It is equal to the coefficient br the discriminant off +tg.
It is analogous to the invarian€& and©’ for a pair of conics.

The Salmon coni@ssociated to a pair of coni¢s andC"’ is defined to be
the locusS(C, C") of pointsx in P? such that the pairs of the tangents through
z to C and toC” are harmonically conjugate. Note that it makes sense even
whenz lies on one of the conics. In this case one considers the corresponding
tangent as the double tangent.

Let A be a square symmetricx 3-matrix. The entries of the adjugate matrix
adj(A) are quadratic forms in the entries 4f By polarization, we obtain

adj(MA + M\ B) = Ajadj(A) +AoAiadj(A, B) + Afadj(B),
where(A, B) — adj(A, B) is a bilinear function ofd and B.

Theorem 2.3.14 LetC = V(q),C’ = V(q¢'), whereq and ¢’ are quadratic
forms defined by symmetric matricds = (a;;) and B = (b;;). Then the
Salmon coni&(C, C”) is defined by the matriadj(adj(A),adj(B)).

Proof By duality, the pencil of lines through a poimt = [z, 21, 22| cor-
responds to the liné, = V(zoug + z1u1 + zous) in the dual plane with
dual coordinatesiy, uy, us. Without loss of generality, we may assume that
zo = —1. LetCV,C"V be the dual conics defined by the matrices adj(4) =
(A;;),adj(B) = (B;;). The intersection of the ling, with C" is equal to two
points{ug, u1, Toug + x1u1] such that

(Ago + Apawo + Agead)ud + (A11 + Aoz + Agox?)ud

+2(A22.Z‘0t1 + AOQ.Z‘l + Algl‘o + Am)uoul = 0

ReplacingA with B, we get the similar formula for the intersection/odvith
C’V. The intersection pointBig, u1, zoug + x1u1] correspond to the tangent
lines toC andC’ passing through the point By (2.3), they are harmonically
conjugate if and only if

(Aoo + Ao2wo + Ao2a3)(Bi1 + Biaw1 + Boga?)
+(Boo + Boaxo + Baoxd)(Ar1 + A1axy + Agox?)

—2(Agozots +Agax1+Ar2z0+ Ao ) (Baazox1 + Boax1 + Biazo+Bo1) = 0.
This gives the equation of the Salmon cofig’, C’):
(A22B11 + A11B22 — 2A12B12)$(2) + (AooB22 + A22Boo — 2A02Bo2)$§
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+(AooB11+A11 Boo—2A01 Bo1)2° +2(Ao2 Bi2+A12 B2 — Ag2 Bz — Aoz Baz ) Tow1
+2(Ao2B11 + A11Bo2 — A12Bo1 — Ao1Bi2)zox2
+2(AooBi12 + A12Boo — Ao2Bo1 — Ao1Boz2)z1z2 = 0.

Itis easy to see that the symmetric matrix defining this quadratic form is equal
to adj(adj(A)adj(B)). O

Let S(C,C") = V(s). Consider the pencil generated 6% andC’". In
matrix notation, it is equal to the pencil of matrices adj(Ayadj(B). The
dual conics of this pencil form a quadratic family of conics defined by the
matrices adj(adj(A) +adj(B)) = |A|A + tS + t?| B| B, whereS is the ma-
trix defining the Salmon conic. Its members are tangent to the quartic curve
V(s? — 4|A||Blqq). Since the members of the linear pencil pass through the
four pointsCY N C’V, all members of the quadratic family are tangent to the
four common tangents &f andC’. Thus

V(s? — 4|A||Blaq’) = V (lilal3la), (2.24)

whereV (l;) are the common tangents. This implies the following remarkable
property of the Salmon conic.

Theorem 2.3.15 LetC andC’ be two conics such that the dual conics inter-
sect at four distinct points representing the four common tangerisaofd S.
Then the eight tangency points lie on the Salmon conic associated veittd
C'.

Here is another proof of the Theorem which does not use (2.24): beta
point where the Salmon conic meets Then the tangent liné throughz to
C represents a double line in the harmonic pencil formed by the four tangents
throughz to C andS. As we remarked before, the conjugate pair of lines must
contain/. Thus/ is a common tangent t6' and S and hencex is one of the
eight tangency points. Conversely, the argument is reversible and shows that
every tangency point lies on the Salmon conic.

The Salmon conic represents a covariant of pairs of conics. A similar con-
struction gives a contravariant conic in the dual plane, calle&#imon enve-
lope conicS’(C, C”). It parameterizes lines which intersect the dual conlics
andC’ at two pairs of harmonically conjugate points. We leave to the reader to
show that its equation is equal to

(agab11 + ai1bag — 2a12b12)ud + (agobaz + azeboo — 2ag2bos)u?

+(agobi1 +a11boo — 2ag1bo1 )us +2(ap2bi2 + a12boz — azeboz — agzbaz )uous
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+2(agp2b11 + a11bo2 — a12bo1 — ap1b12)uous

+2(agobi2 + a12boo — ao2bo1 — ap1bo2)uius = 0.

If we write S'(C,C") = V(s'), we find, as above, that (s'2 — ¢V¢'V) is
equal to the union of 4 lines corresponding to intersection points of C".
This implies that the Salmon envelope conic passes through the eight points
corresponding to the eight tangentsbndC” at the intersection points.

The equation of the Salmon conic is greatly simplified if we simultaneously
diagonalize the quadriagsandq’ definingC andC’. Assumeg = t2 + 2 +
t2,q' = at? + bt? + ct3. Then the equation &(C, C’) becomes

a(b+ c)t2 +b(c+ a)t? + c(a+b)t2 =0,
and the equation &' (C, C’) becomes
(b+ c)ug + (¢ + a)u? + (a + b)us = 0.

By passing to the dual conic, we see that the dual c8Hi€, C’)V is different
from S(C, C"). Its equation is

(a+c)(a+b)tg+ (a+b)(b+ c)t] + (a+b)(b+c)ts = 0.

It can be expressed as a linear combination of the equatiord§ 6f and
S(C,C")

(a+c)(a+b)ta+(a+b)(b+c)ti +(a+b)(b+c)t; = (ab+betac)(tg+t1+t3)

+(a+b+c)(atd +bt3 + ct3) — (a(b+ c)ti + b(c+ a)t] + c(a + b)t3).

Remark2.3.5 The full system of covariants, and contravariants of a pair of
conics is known (see [286], p. 286. ) The curgg<”’, S'(C, C') and the Jaco-
bian of C, C’, andS(C, C”) generate the algebra of covariants over the ring of
invariants. The envelopesY, C’V,S'(C,C") and the Jacobia@V,C’V, and
S’(C, ") generate the algebra of contravariants.

indexcontravariant!of a pair of conics

Exercises

2.1Let E be a vector space of even dimension= 2k over a field K of character-
istic 0 and (e1, ..., e,) be a basis inE. Letw = 3, . aije; Ae; € A°EY and

A = (aij)1<i<j<n be the skew-symmetric matrix defined by the coefficiens Let

AN(w)=wA---Aw=akle; A---Ae, for somea € F. The element is called the
pfaffianof A and is denoted by Pf(A).



122 Conics and quadric surfaces

(i) Show that

Pi(A) =Y e(S) [] au

Ses (4,5)€S
whereS is a set of pairgi1, j1),. .., (ix, jx) such thatl < is < js < 2k,s =
ook, {1, ik, g1,y = {1,...,n}, S is the set of such setS,
e(S) = 1if the permutation(is, j1,. .., i, jk) IS even and-1 otherwise.

(i) Compute Pf(A)whenn = 2,4, 6.
(iii) Show that, for any invertible matrix’,

PI‘C - A-C) = det(C)Pf(A).
(iv) Using (iii) prove that
det(A) = Pf(A)>.
(iv) Show that

n

Pf(A) = > (1) 7'Pf(Ai)aij,

i=1

whereA;; is the matrix of order — 2 obtained by deleting theth andj-th rows
and columns ofd.

(v) Let B be a skew-symmetric matrix of odd ord2t — 1 and B; be the matrix
of order2k — 2 obtained fromB by deleting the-th row andi-th column. Show
that the vecto(Pf(B,), ..., (—1)""'Pf(B;),. .., Pf(Bax_1)) is a solution of the
equationB - x = 0.

(vi) Show that the rank of a skew-symmetric matrixof any ordern is equal to
the largestn such that there exist < ... < 4,, such that the matri¥i;, .. ;,,
obtained fromA by deletingi;-th rows and columngj, = 1,...,m, has nonzero
pfaffian .

2.2LetV = 1»(P?) be a Veronese surface Y, considered as the space of conics in
P2

() Let A be a plane iP®> and\V, be the net of conics if®* cut out by hyperplanes
containingA. Show thatA is a trisecant plane if and only if the set of base points
of Na consists of> 3 points (counting with multiplicities). Conversely, a net of
conics through 3 points defines a unique trisecant plane.

(i) Show that the nets of conics with 2 base points, one of them is infinitely near,
forms an irreducible divisor in the variety of trisecant planes.

(iii) Using (ii), show that the anticanonical divisor of degenerate triangles is irre-
ducible.

(iv) Show that the trisecant planes intersecting the Veronese plane at one point (cor-
responding to net of conics with one base point of multiplicity 3) define a smooth
rational curve in the boundary of the variety of self-polar triangles. Show that this
curve is equal to the set of singular points of the boundary.

2.3LetU c (P*)® be the subset of the symmetric productdfparameterizing the
sets of three distinct points. For each et U let Lz be the linear system of conics
containingZ. Consider the mag : U — G2(P%), Z +— Lz C |Op2(2)|.

(i) Consider the divisotD in U parameterizing sets of 3 distinct collinear points.
Show thatf (D) is a closed subvariety @ (P°) isomorphic taP?.
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(i) Show that the maf extends to the Hilbert schent®?)! of 0-cyclesZ with
h°(0z) = 3.

(iii) S(hov3 that the closureD of 7~ (D) in the Hilbert scheme is isomorphic to a
P3-bundle oveiP? and the restriction of to D is the projection map to its base.

(iv) Define the magyf : P — |Op2 (2)| which assigns to a point in the fibpe* (Z)
the corresponding conic in the net of conics thodgshow that the fibre of over
a nonsingular coni€' is isomorphic to the Fano variety of self-polar triangles of
the dual conia”".

(v) LetP® = f~1(D2(2)) be the preimage of the hypersurface of singular conics.
Describe the fibres of the projectiops P* — (P?)Pl andf : P* — D2(2).

2.41dentify P* with its image under a Veronese map: P — P2,

() Show that any involution oP* (i.e. an automorphism of order 2) coincides with
the involution of the Veronese conic obtained by projection from a point not lying
on the conic (called the center of the involution).

(i) Show that two involutions o' without common fixed points commute if and
only if the two pairs of fixed points are harmonically conjugate.

(iii) Show that the product of three involutions is an involution if their centers are
collinear (J. Valles). The converse is known for any number of involutions.

2.5Prove that two unordered paifa, b}, {c, d} of points inP! are harmonically con-
jugate if and only if there is an involution &' with fixed pointsa, b that switches:
andd.

2.6 Prove the followingHesse’s Theorem. If two pairs of opposite vertices of a quadri-
lateral are each conjugate for a conic, then the third pair is also conjugate. Such a
quadrilateral is called Besse quadrilateralShow that four lines form a polar quadri-
lateral for a conic if and only if it is a Hesse quadrilateral.

2.7 A tetrad of points1, p2, ps, p4 in the plane is calledelf-conjugatevith respect to
a nonsingular conic if no three points are collinear and the pole of eacpgigldies

on the opposite Sidgxp;.

(i) Given two conjugate triangles, show that the vertices of one of the triangles to-
gether with the center of perspectivity form a self-conjugate tetrad.

(i) Show that the four lines with poles equalg, p2, ps, p4 form a polar quadrilat-
eral of the conic and any nondegenerate polar quadrilateral is obtained in this way
from a self-conjugate tetrad.

(iii) Show that any polar triangle of a conic can be extended to a polar quadrilateral.

2.8 Extend Darboux’s Theorem to the case of two tangent conics.

2.9Show that the secant lines of a Veronese cuRyein P are parameterized by the
surface in the Grassmanniah (P™) isomorphic toP?. Show that the embedding of
P2 into the Grassmannian is given by the Schwarzenberger bundle.

2.10Let U be a 2-dimensional vector space. Use the construction of curves of degree
n — 1 Poncelet related to a conic to exhibit an isomorphism of linear representations
A (S"U) andS™~* (S2U) of SL(U).

2.11 Assume that the pencil of sections of the Schwarzenberger bdhdlehas no

base points. Show that the Poncelet curve associated to the pencil is nonsingular at a
point z defined by a sectios from the pencil if and only if the scheme of zerd$s)

is reduced.
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2.12Find a geometric interpretation of vanishing of the invarig®’ from (2.16) in
the case whed' or S is a singular conic.

2.13Let p1, p2, ps, pa be four distinct points on a nonsingular codic Show that the
triangle with the verticesl = pips N p2pa, B = pipz N p3pa andC' = pipa N p2p3
is a self-conjugate triangle with respectdo

2.14 Show that two pairda, b}, {c, d} of points inP! are harmonically conjugate if
and only if the cross ratifuc; bd] is equal to—1.

2.15Let (a,b, ¢, d) be a quadrangle i®?, andp, ¢ be the intersection points of two
pairs of opposite sidash, cd andbc, ad. Letp’, ¢’ be the intersection points of the line
pg with the diagonal&c andbd. Show that the pairg, ¢) and(p’, ¢') are harmonically
conjugate .

2.16Show that the pair of points on a diagonal of a complete quadrilateral defined by its
sides is harmonically conjugate to the pair of points defined by intersection with other
two diagonals.

2.17Show that a general net of conics admits a common polar quadrantBsShow
that four general conics admit a unigue common polar quadrangle.

2.19Find the condition on a pair of conics expressing that the associate Salmon conic
is degenerate.

2.20 Show that the triangle formed by any three tangents to two general conics is in
perspective with any three of common points.

2.21Show that the set dfn + 2 vertices of two self-polafn + 1)-hedra of a quadric
in P" impose one less condition on quadrics. In particular, two self-polar triangles lie
on a conic, two self-polar tetrahedra are the base points of a net of quadrics.

2.22 A hexad of points inP? is called self-conjugate with respect to a nonsingular
quadric if no four are on the plane and the pole of each plane spanned by three points
lies on the plane spanned by the remaining three points.. Show that the quadric admits a
nondegenerate polar hexahedron whose planes are polar planes of points in the hexad.
Conversely, any nondegenerate polar hexahedron of the quadric is obtained in this way
from a self-conjugate tetrad.

2.23 Show that the variety of sums of 5 powers of a nonsingular quadric surface is
isomorphic to the variety of self-conjugate pentads of poini&’in

2.24Consider 60 Pascal lines associated with a hexad of points on a conic. Prove the
following properties of the lines.

(i) There are 20 points at which three of Pascal lines intersect, calleBt#ieer
points.

(ii) The 20 Steiner points lie on 15 lines, each containing 4 of the pointd{ileker
lines).

(iii) There are 60 points each contained in threédRer lines (thé<irkman points).

2.25Prove the following generalization of Pascal’'s Theorem. Consider the twelve in-
tersection points of a nonsingular quadric surférevith 6 edges of a tetrahedrdh

with verticesps, p2, ps, p4. FOr each vertex, choose one of the 12 points on each edge
Pip; and consider the plank; spanned by these three points. Show that the four lines

in which each of these four planes meats the opposite face of the tetrahedron are rulings
of a quadric. This gives 32 quadrics associated to the(ffai)) [104], p. 400, [21], v.

3, Ex. 15, [540], p. 362.

2.26Let Oy, ..., 04 be the invariants of a pair of quadric surfaces.
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(i) Show that the 5 product®,, 0,04, 0,03, 0304, 030, generate the algebra
of invariants of bidegree@n, n) with m = n.

(i) Show that the GIT-quotient of ordered pairs of quadrics by the group SL(4)
is isomorphic to the hypersurface of degree 6 in the weighted projective space
P(1,2,2,3,3) given by the equatioty t3 — tst4 = 0.

(ii Show that the GIT-quotient has a singular line and its general point corresponds
to the orbit of the pail’ (3" t2), V((t5 — 1) + a(t3 — 13)).

Historical Notes

There is a great number of books dealing with the analytic geometry of conics.
The most comprehensive source for the history of the subject is Coolidge’s
book [141]. Many facts and results about real conics treated in a synthetic way
can be found in text-books in projective geometry. Coxeter’'s small book [148]
is one of the best.

The theory of polarity for conics goes back to Poncelet [494]. Polar trian-
gles and tetrahedra of a conic and a quadric surface were already studied by
P. Serret [576]. In particular, he introduced the notion of a self-conjugate tri-
angles, quadrangles and pentagons. They were later intensively studied by T.
Reye [504], [509] and R. Sturm [601], B. 3. The subject of their study was
called thePolarraum, i.e. a pair consisting of a projective space together with
a nonsingular quadric.

Pascal’s Theorem was discovered by B. Pascal in 1639 when he was 16 years
old [472] but not published until 1779 [472]. It was independently rediscovered
by C. MacLaurin in 1720 [414]. A large number of results about the geometry
and combinatorics of sixty Pascal lines assigned to 6 points on a conic have
been discovered by J. Steiner, J. Kirkman, A. Cayley, G. Salmon, L. Cremona
and others. A good survey of these results can be found in Note 1 in Baker's
book [21], v.2, and Notes in Salmon’s book [537]. We will return to this in
Chapter 9.

Poncelet’s Closure Theorem which is the second part of Darboux’s Theorem
2.2.2was first discoverd by J. Poncelet himself [494]. We refer to the excellent
account of the history of the Poncelet related conics to [51]. A good elementary
discussion of Poncelet's Theorem and its applications can be found in Flato’s
book [243]. Other elementary and non-elementary treatments of the Poncelet
properties and their generalizations can be found in [26], [27], [130], [132],
[293], [294].

The relationship between Poncelet curves and vector bundles is discussed in
[628], [450], [629], [633]. The Schwarzenberger bundles were introduced in
[554]. We followed the definition given in [195]. The papers [438] and [329],
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[330] discuss the compactification of the variety of conjugate triangles. The
latter two papers of N. Hitchin also discuss an interesting connection with
Painleve equations.

The notion of the apolarity of conics is due to T. Reye [507]. However,
J. Rosanes [524] used this notion before under the name conjugate conics.
In the same paper he also studied the representation of a conic as a sum of
four squares of linear forms. The condition (2.8) for conjugate conics was first
discovered by O. Hesse in [320]. He also proved that this property is poristic.
The condition for Poncelet relation given in terms of invariants of a pair of
conics (Theoren2.3.10) was first discovered by A. Cayley [79], [84].

The theory of invariants of two conics and two quadric surfaces was first
developed by G. Salmon (see [537], [539], vol. 1). The complete system of
invariants, covariants and contravariants of a pair of conics was given by J.
Grace and A. Young [286]. P. Gordan has given a complete system of 580
invariants, covariants and contravariants of a pair of quadric surfaces [282].
Later H.W. Turnbull was able to reduce it to 123 elements [630]. In series of
papers of J. Todd one can find further simplifications and more geometric in-
terpretations of the system of combinants of two quadric surfaces [624], [625].
A good expositions of the theory of invariants can be found in Sommerville’s
and Todd’s books [584], [626]. The latter book contains many examples and
exercises some of which were borrowed here.

Chasles’ Theorem.3.3about the covariant quadric was proven by him in
[98] and reproved later by N. Ferrers[239] . A special case was known earlier to
Bobillier [46] Chasles’ generalization of Pascal’s Theorem to quadric surfaces
can be found in [104]. Baker’s book [21], v. 3, gives a good exposition of polar
properties of quadric surfaces.

The proof of Theoren2.3.15is due to J. Coolidge [141], Chapter \43.

The result was known to G. von Staudt [587] ((see [141], p. 66) and can be also
found in Salmon’s book on conics [537], p. 345. Although Salmon writes in
the footnote on p. 345 that “| believe that | was the first to direct the attention
to the importance of this conic in the theory of two conics”, this conic was
already known to Ph. La Hire [392] (see [141], p. 44 ). In Sommerville’s book
[583], Salmon conic goes under the nahamonic conic-locusf two conics.
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Plane cubics

3.1 Equations

3.1.1 Elliptic curves

There are many excellent expositions of the theory of elliptic curves from their
many aspects: analytical, algebraic and arithmetical (a short survey can be
found in Hartshorne’s book [311], Chapter 1V). We will be brief here.

Let X be a nonsingular projective curve of genus 1. By Riemann-Roch, for
any divisorD of degreed > 1, we havedim H%(X,Ox (D)) = d. If d > 2,
the complete linear systeifiD| defines an isomorphis’x — C, whereC
is a curve of degreéd in P?~! (calledelliptic normal curveof degreed). If
d = 2, the map is of degree 2 onf®'. The divisor classes of degré€eare
parameterized by the Jacobian variety(Jagisomorphic toX . Fixing a point
xo on X, the group law on Jac(Xtransfers to a group law ol by assigning
to a divisor clas® of degred) the divisor clas® + xq of degree 1 represented
by a unique point orX. The group law becomes

rDy=z¢€l|r+y—to (3.1

The translation automorphisms &f act transitively on the set PieX) of
divisor classes of degreé This implies that two elliptic normal curves are
isomorphic if and only if they are projectively equivalent. In the cdse 2,
this implies that two curves are isomorphic if and only if the two sets of four
branch points of the double cover are projectively equivalent.

In this Chapter we will be mainly interested in the case: 3. The image
of X is a nonsingular plane cubic curve. There are two known normal forms
for its equation. The first one is tWeierstrass fornand the second one is the
Hesse form. We will deal with the Hesse form in the next subsection. Let us
start with the Weierstrass form.

By Theoreml1.1.8,C = V(f) has an inflection poinp,. Without loss of
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generality, we may assume that = [0,0, 1] and the inflection tangent line

at this point has the equatigp = 0. The projection fronp, is the double
coverC' — P! It has ramification branch points, the intersection points of
C with the first polar. There are four tangent lines(ocontainingpy. One

of them isV (¢y). The first poIarV(g—tf;) of the pointp, is a singular conic
which intersect€’ at the tangency points of the four tangents, we immediately
obtain that it consists of the liné(t,) and a lineV/ (¢2 + at; + bty) not passing
through the poinpy. Changing the coordinates, we may assume that the line
is equal toV/ (t2). Now the equation of’ takes the form

tots + ot} + Btito + vty + oty =0,

wherea # 0. Replacingt; with ¢ + %to, and scaling the coordinates, we
may assume that = 1 and = 0. This gives us th&\eierstrass equatioof a
nonsingular cubic:

tots + 13 + atyty + bty = 0 (3.2)

It is easy to see that is nonsingular if and only if the polynomiaf + ax + b
has no multiple roots, or, equivalently, its discriminant= 4o + 2732 is not
equal to zero.

Two Weierstrass equations define isomorphic elliptic curves if and only if
there exists a projective transformation transforming one equation to another.
It is easy to see that it happens if and onlydf, ') = (\3a, \23) for some
nonzero constamt. This can be expressed in terms of #HiEsolute invariant

3
a
=203 — — . 3.3
J 103 + 2712 (3:3)
Two elliptic curves are isomorphic if and only if their absolute invariants are

equal’

The projectiont, t1,ts] — [to, 1] exhibitsC as a double cover d#'. Its
ramification points are the intersection points’oénd its polar conid’ (¢ots).
The cover has four branch points AJ, [0, 1], whereA® + a\ + b = 0. The
corresponding point§l, A, 0], and [0,0, 1] on C are the ramification points.
If we choosepy = [0,0,1] to be the zero point in the group law @r then
2p ~ 2pq for any ramification poinp implies thatp is a 2-torsion point. Any
2-torsion point is obtained in this way.

It follows from the above computation that any nonsingular plane cubic

V(f) is projectively isomorphic to the plane cublict3t, + 3 + at1t2 + bt3).
The functionsS : f +— a/27,T : f — 4b can be extended to th&ronhold

1 The coefficientl 728 = 2633 is needed to make this work in characterigiand3, otherwise
7 would not be defined for example when= 1, b = 0 in characteristic 2.
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invariants S and1’ of degrees 4 and 6 of a ternary cubic form. The explicit
expressions of and7’ in terms of the coefficients of are rather long and can
be found in many places (e.d.99], [538]).

Fixing an order on the set of branch points, and replacing them by a projec-
tively equivalent set, we may assume that the cubic polynaniial ax + b is
equal to—x(z — 1)(x — A). This gives an affine equation 6f

y* = (e —1)(x - ),

called thelLegendre equation.

The numben\ is equal to the cross ratiB(q1¢2; g3q4) of the four ordered
branch points(¢i1, g2, ¢3,94) = (0, A, 1,00). The absolute invariant (3.3) is
expressed in terms ofto give the following formula:

g(AV = A41)°

G- oy

j=2
Remark3.1.1 For any binary forng(to,¢1) of degree4 without multiple
zeros, the equation

t5 4 g(to,t1) =0 (3.5)

defines an elliptic curvé in the weighted projective plafi®1, 1, 2). The four
zeros ofg are the branch points of the projectiogh — P! to the first two co-
ordinates. So, every elliptic curve can be given by such an equation. The coef-
ficientsa, b in the Weierstrass equation are expressed in terms of the invariants
S andT of binary quartics from Exampl&.5.2. We have = —45,b = —4T.

In particular.

B 275(g)3
~ S(g)? —21T(9)*"

Definition 3.1.1 A nonsingular plane cubi¥’( f) with Weierstrass equation
(3.2)is calledharmonic (resp.equianharmonic) i6 = 0 (resp.a = 0).

We leave to the reader to prove the following.

Theorem 3.1.1 LetC = V(f) be a nonsingular plane cubic andbe any
point onC'. The following conditions are equivalent.

(i) C'is aharmonic (resp. equianharmonic cubic).

(i) The absolute invarianf = 1728 (resp.j = 0).

(iii) The set of cross ratios of four roots of the polynontiglt? + at,t2 +
bt3) is equal to{—1, 2, %} (resp. consists of two primitive cube roots of
—1).
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(iv) The group of automorphisms 6f leaving the point invariant is a
cyclic group of order 4 (resp. 6).

Note thatC' is a harmonic cubic if and only if the invariafit of degree 3
on the space of binary quartic form.82) vanishes on the binary forgnin
equation (3.5). A quartic binary form on whi@hvanishes is calledlaarmonic
binary quartic. We know that a binary forgis harmonic if and only if admits
an apolar binary quadratic form. One can check that this form is nondegenerate
if and only if g has no multiple zeros. In this case it can be written as a sum of
two powers of linear forma' + 3. This exhibits an obvious symmetry of order
4. Changing coordinates we can reduce the forej tot} = (12 +t2)(t2 —t3).

The pairs of zeros of the factors are harmonically conjugate pairs of points.
This explains the name harmonic cubic.

Theorent.1.1gives a geometric interpretation for vanishing of the quadratic
invariantS (1.82) on the space of binary quartics. It vanishes if and only if there
exists a projective transformation of order 3 leaving the zeros of a binary forms
invariant.

Another useful model of an elliptic curve is an elliptic normal quartic curve
C in P3. There are two types of nondegenerate quartic curvé®’ iwhich
differ by the dimension of the linear system of quadrics containing the curve.
In terminology of classical algebraic geometry, a space quartic curve is of the
first speciesf the dimension is equal to 1, quartics of thkecond specieare
those which lie on a unique quadric. Elliptic curves are nonsingular quartics
of the first species. The proof is rather standard (see, for example, [307]). By
Proposition8.6.1from Chapter 8, we can writ€' as the intersection of two
simultaneously diagonalized quadrics

3
Q =V 1), Q=V(_ at)).
=0 =0
The pencilA\@; + uQ- contains exactly four singular members corresponding
to the parameters-a;, 1],7 = 0,1,2,3. The curveC is isomarphic to the
double cover o' branched over these four points. This can be seen in many
ways. We will present later one of them, a special case of Weil's Theorem on
intersection of two quadrics (same proof can be found in Harris’s book [307],
Proposition 22.38). Changing a basis in the pencil of quadrics contafiing
we can reduce the equations@fto the form

to+ti+t3 =1+ X3 +t3=0. (3.6)

The absolute invariant df is expressed via formul&(4).



3.1 Equations 131

3.1.2 The Hesse equation

Classical geometers rarely used Weierstrass equations. They prélessels
canonical equationsf cubic curves:

ts 43 + t3 + 6atotity = 0. (3.7)

Let us see that any nonsingular cubic can be reduced to this form by a linear
change of variables.

Since any tangent line at an inflection point intersects the curve with mul-
tiplicity 3, applying (1.23), we obtain that the curve has exactly 9 inflection
points. Using the group law on an elliptic cubic curve with an inflection point
o as the zero, we can interpret any inflection point as a 3-torsion point. This
of course agrees with the fact the gralifj3] of 3-torsion points on an elliptic
curveX is isomorphic taZ/37Z)2.

Let H be a subgroup of order 3 of. Since the sum of elements of this
group add up to O, we see that the corresponding 3 inflection ppjigts:
satisfyp + ¢ + r ~ 30. It is easy to see that the rational function @rwith
the divisorp + ¢ + r — 30 can be obtained as the restriction of the rational
function m(to, t1,t2)/lo(to, t1, t2), whereV(m) defines the line containing
the points, ¢, » andV (Iy) is the tangent t@ at the poinb. There are 3 cosets
with respect to each subgroup. Since the sum of elements in each coset is
again equal to zero, we get 12 lines, each containing three inflection points.
Conversely, if a line contains three inflection points, the sum of these points
is zero, and it is easy to see that the three points forms a coset with respect
to some subgroupl. Each element ofZ/3Z)? is contained in 4 cosets (it is
enough to check this for the zero element).

A triangle containing the inflection points is called enflection triangle.
There are four inflection triangles and the union of their sides is the set of 12
lines from above. The configuration of 12 lines and 9 points, each line contains
3 points, and each point lies on four lines is the famidesse arrangement of
lines(123,94).

Consider the polar conic of an inflection point. It splits into the union of the
tangent line at the point and another line, calledithemonic polar lineof the
inflection point.

Lemma 3.1.2 Letx be a point on a nonsingular cubi€. Any line¢ passing
throughz intersectsC' at pointsy, z which are harmonically conjugate to the
pair z,w, wherew is the intersection point of the line and the conic polar
P.(C).
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We will prove this property later in a more general case whes a curve
of degreed andz is its point of multiplicity (d — 2) (see RemarR?).

Proposition 3.1.3 Leta,b, ¢ be three collinear inflection points. The har-
monic polar lines of three inflection points on a lihetersect at the opposite
vertex of the inflection triangle containirfg

Proof Let A be the inflection triangle with sidécontaining the points, b, c.
Consider the three line& througha which join a with one of the inflection
point z; on the side ofA. Let z; be the other inflection point o} (lying on

the other side). By the previous Lemma, the harmonic polar line intersects each
¢; at a pointy; such that the cross ratiB(ay;; t;z;) is constant. This implies

that the harmonic polar line is the line in the pencil of lines through the vertex
which together with the two sides and the line passing thraughake the
same cross ratio in the pencil. Since the same is true for harmonic polar lines
of the pointsh andc, we get the assertion. O

It follows from the previous Proposition that the nine harmonic polar lines
intersect by three at 12 edges of the inflection triangles, and each vertex be-
longs to 4 lines. This defines thkial Hesse arrangement of 1inég,, 123).

It is combinatorially isomorphic to the arrangement of lines in the dual plane
which is defined from the Hesse line arrangement via duality.

Now it is easy to reduce a nonsingular cubic cuéve= V (f) to the Hesse
canonical form. Choose coordinates such that one of the inflection triangles is
the coordinate triangle. Letbe one of its vertices, say= [1, 0, 0], andx be
an inflection point on the opposite lifé(ty). ThenP,(C) is the union of the
tangent toC' at x and the harmonic polar af. Since the latter passes through
q, we haveP,:,(C) = P,,2(C) = 0. Thus the polar liné>;2 (C) intersects the
line V(to) at three points. This can happen onlyAf:(C) = V (ty). Hence

V(‘%g) = V(to) and f has no terms?t,, t3to. We can write

f = atd + bt + ct3 + dtotts.

SinceC is nonsingular, it is immediately checked that the coefficients ¢
are not equal to zero. After scaling the coordinates, we arrive at the Hesse
canonical form.

It is easy to check by taking partials, that the condition that the curve given
by the Hesse canonical form is nonsingular is

1+8a2 #0. (3.8)

By reducing the Hesse equation to a Weierstrass forms one can express the
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Aronhold invariantss, T and the absolute invariagin terms of the parameter
ain (3.7):

S=a—at (3.9

T=1-20a°—8a°, (3.10)
. 64(a—at)?

= AT (3.11)

3.1.3 The Hesse pencil

Since the cubi€ and its four inflection triangles pass through the same set of
9 points, the inflection points @, they belong to a pencil of cubic curves. This
pencil is called thedesse pencillt is spanned by’ and one of the inflection
triangles, say the coordinate triangle. Thus the Hesse pencil is defined by the
equation

At + 1] +3) + ptotrts = 0. (3.12)
Its base points are

0,1,—1], [0,1,—¢], [0,1,—€%,

[170771]7 [1703762]7 [1,0,76},

[1,-1,0], [1,—€0], [1,—€%0], (3.13)
wheree = €27/3, They are the nine inflection points of any nonsingular mem-

ber of the pencil. The singular members of the pencil correspond to the values
of the parameters

(A, ) =(0,1), (1,-3), (1,-3e¢), (1a73€2)'

The last three values correspond to the three valuesfof which the Hesse
equation defines a singular curve.

Any triple of lines containing the nine base points belongs to the pencil and
forms its singular member. Here they are:

Vi(to), Vi(t1), V(t2),
V(to +t1 +ta), V(to + et1 + %ta), V(to + €ty + eta), (3.14)
V(to + ety +ta), Vto + €2ty + €*ta), V(to + t1 + eta),
V(to + €2ty +ta), V(to + ety + etz), V(to + t1 + €*ta).
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We leave to a suspicious reader to check that

(to +t1 + t2)(to + ety + €2ta)(to + €2ty + eta) =t + 13 4+ t5 — 3totita,
(to + ety +to)(to + €%ty + 2ta) (to + t1 + eta) = t3 + 3 + 3 — 3etotyta,

(to + €2t1 +t2)(to + ety + eta)(to + t1 + €2ta) =t + 5 + t5 — 3’ tot1ta.

The 12 lines (3.14) and 9 inflection points (3.13) form the Hesse configuration
corresponding to any nonsingular member of the pencil.

Choos€[0, 1, —1] to be the zero point in the group law @h Then we can
define an isomorphism of groups: (Z/3Z)?> — X|[3] by sending[1, 0] to
[0,1, —€], [0,1] to [1,0,—1]. The points of the first row in (3.13) is the sub-
groupH generated by([1,0]). The points of the second row is the cosefbf
containings([0, 1]).

Remark3.1.2 Note that, varying in P! \ {—1, —£ —< oo}, we obtain a
family of elliptic curvesX,, defined by the equation (3.7) with a fixed isomor-
phisme,, : (Z/3Z)?> — X,[3]. After blowing up the 9 base points, we obtain
a rational surfacé(3) together with a morphism

f:8(3) - P! (3.15)

defined by the rational map? — — P!, [to, t1,t2] — [totite, ts+15 +13]. The
fibre of f over a point(a,b) € P? is isomorphic to the member of the Hesse
pencil corresponding to\, 1) = (—b, a). It is known that 8.15) is amodular
family of elliptic curves with level 3, i.e. the universal object for the fine moduli
space of pair§X, ¢), whereX is an elliptic curve and : (Z/3Z)* — X|[3]is

an isomorphism of groups. There is a canonical isomorplfisi# Y, where

Y is the modular curve of level 3, i.e. a nonsingular compactification of the
quotient of the upper half-plarfé = {a + bi € C : b > 0} by the group

I'(3)={4= <‘CL Z) €SL(2,Z): A=1I; mod 3}

which acts onH by Mobius transformations +— %. The boundary of
H/T'(3) inY consists of 4 points (the cusps). They correspond to the singular
members of the Hesse pencil.

3.1.4 The Hesse group

The Hesse groups16 is the group of projective transformations which pre-
serve the Hesse pencil of cubic curves. First, we see the obvious symmetries
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generated by the transformations

T [to, t1,ta] — [to, €at1, €5ta],
o : [to, t1,ta] — [t2,t0,t1).

They define a projective representation of the grép37Z)2.

If we fix the group law by taking the origin to 46, 1, —1], thent induces
on each nonsingular fibre the translation automorphism by the fipiht—e]
ando is the translation by the poift, 0, —1].

Theorem 3.1.4 The Hesse grou@s;¢ is a group of order 216 isomorphic to
the semi-direct product

(Z./37,)* x SL(2,Fs),

where the action dBL(2,F3) on(Z/3Z)? is the natural linear representation.

Proof Letg € Gai6. It transforms a member of the Hesse pencil to another
member. This defines a homomorphigip s — Aut(P!). An element of the
kernel K leaves each member of the pencil invariant. In particular, it leaves
invariant the curvé/ (tot1t2). The group of automorphisms of this curve is
generated by homothetiés), t1,t2] — [to, at1, btz] and permutation of co-
ordinates. Suppose induces a homothety. Since it also leaves invariant the
curveV (t3 + t3 + t3), we must havd = a3 = b®. To leave invariant a gen-
eral member we also need thet = b3 = be. This implies thaty belongs to
the subgroup generated by the transformation even permutation of co-
ordinates belongs to a subgroup generated by the transformatibime odd
permutatioroy : [to, t1,t2] — [to, t2,t1] acts on the group df-torsion points

of each nonsingular fibre as the negation automorphism —z. Thus we see
that

K = (Z/3Z)? x (o).

Now let I be the image of the grou@ss in Aut(P!). It acts by permuting
the four singular members of the pencil and thus leaves the set of zeros of the
binary form

A = (83 + td)tg

invariant. It follows from the invariant theory that this implies tlfatis a sub-
group offl,. We claim thatd = 4. Consider the projective transformations
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given by the matrices

1 1 1 e ¢
or=\|1 ¢ €|, o2= e g2
1 € €

e? g?

62
62
The transformationsg, o1, o2 generate a subgroup isomorphic to the quater-
nion group@s with center generated byy. The transformation

o3 : [to,tl,tz} = [5t07t27t1]

satisfiess3 = oy. It acts by sending a cun@,, from (3.7) toC.,. It is easy

to see that the transformations, o, 03, 7 generate the group isomorphic to
SL(2,Fs3). Its center igo() and the quotient by the center is isomorphieltp

In other words, this group is the binary tetrahedral group. Note that the whole
group can be generated by transformatiens o, 0. O

Recall that a linear operater € GL(F) of a complex vector spacE of
dimensionn + 1 is called acomplex reflectiorif it is of finite order and the
rank ofoc —idg is equal to 1. The kernel af —idg is a hyperplane ittZ, called
thereflection hyperplanef o. It is invariant with respect te and its stabilizer
subgroup is a cyclic group. ABomplex reflection groufs a finite subgroug=
of GL(FE) generated by complex reflections. One can choose a unitary inner
product onE such that any complex reflectieanfrom E can be written in the
form

Sy x— x4+ (n—1)(z,v)v,

wherev is a vector of norm 1 perpendicular to the reflection hyperplpef
o, andn is a non-trivial root of unity of order equal to the orderaaf

Recall the basic facts about complex reflection groups (see, for example,
[586]):

e The algebra of invariant§(E)¢ = Clt,...,t,| is freely generated by
n + 1 invariant polynomialsfy, . . ., f. (geometrically,E/G = C"*1).

e The product of degrees of the polynomialsfy, . . ., f, is equal to the order
of G.

e The number of complex reflections @is equal tod_(d; — 1).

All complex reflections group were classified by G. Shephard and J. Todd
[578]. There are five conjugacy classes of complex reflection subgroups of
GL(3,C). Among them is the groufy isomorphic to a central extension of
degree 3 of the Hesse group. It is generated by complex reflectignsf or-

der 3, where the reflection lin, is one of the 12 lines (3.14) iB? andv is

the unit normal vectofa, b, ¢) of the lineV (aty + bt1 + ct2). Note that each
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reflections,, ,, leaves invariant the hyperplanes with normal vector orthogonal
to v. For examples(, o,0),- leaves invariant the lin& (t,). This implies that

each of the 12 complex reflections leaves the Hesse pencil invariant. Thus the
image ofG in PGL(3,C) is contained in the Hesse group. It follows from the
classification of complex reflection groups (or could be checked directly, see
[586]) that it is equal to the Hesse group and the subgroup of scalar matrices
from G is a cyclic group of order 3.

Each of the 12 reflection lines defines two complex reflections. This gives 24
complex reflections id-. This number coincides with the number of elements
of order 3 in the Hesse group and so there are no more complex reflections in
G. Letd; < dy < d3 be the degrees of the invariants generating the algebra
of invariants ofG. We haved; + dy + d3 = 27,dyd>ds = 648. This easily
givesd; = 6,dy = 9,d3 = 12. There are obvious reducible curves of degree
9 and 12 inP? invariant with respect t&:. The curve of degree 9 is the union
of the polar harmonic lines. Each line intersects a nonsingular member of the
pencil at nontrivial 2-torsion points with respect to the group law defined by
the corresponding inflection point. The equation of the union of 9 harmonic
polar lines is

fo = (t5 — t1)(t — 13)(¢] — £3) = 0. (3.16)
The curve of degree 12 is the union of the 12 lines (3.14). Its equation is
fia = totito[27tat5t5 — (t3 4+ 3 +3)3] = 0. (3.17)

A polynomial defining an invariant curve isralative invariantof G (it is an
invariant with respect to the grou@ = G N SL(3,C)). One checks that the
polynomial fy is indeed an invariant, but the polynomjgl, is only a relative
invariant. So, there exists another curve of degree 12 whose equation defines
an invariant of degree 12. What is this curve? Recall that the Hesse group
acts on the base of the Hesse pencil via the action of the tetrahedron group
4. It has 3 special orbits with stabilizers of order 2,3 and 3. The first orbit
consists of 6 points such that the fibres over these points are harmonic cubics.
The second orbit consists of 4 points such that the fibres over these points are
equianharmonic cubics. The third orbit consists of 4 points corresponding to
singular members of the pencil. It is not difficult to check that the product of
the equations of the equianharmonic cubics defines an invariant of degree 12.
Its equation is

flo = (5 + 1 + )ty + 15 +13)° + 216t5t5¢3) = 0. (3.18)
An invariant of degree 6 is

fo =TS +15 +15) —6(t5 +t5 +13)2 (3.19)
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The product of the equations defining 6 harmonic cubics is an invariant of
degree 18

fis = (5 + 15 +13)% — 540335 (¢ + 3 + 13)% — 5832t5t9t5 = 0. (3.20)

3.2 Polars of a plane cubic

3.2.1 The Hessian of a cubic hypersurface

Let X = V(f) be a cubic hypersurface if". We know that the Hessian
He(X) is the locus of points. € P™ such that the polar quadrié,(X) is
singular. Also we know that, for any € He(X),

Sing(E(X)) = {b € P2 : Dy(Dy(f)) = 0}.
SinceP,(P,(X)) = P,(P»(X)) we obtain that € He(X).

Theorem 3.2.1 The HessiaHe(X) of a cubic hypersurfac& contains the
SteinerianSt(X). If He(X) # P, then

He(X) = St(X).

For the last assertion one only needs to compare the degrees of the hyper-
surfaces. They are equalto+ 3.
In particular, the rational map, if defined,

sty @ St(X) — He(X),a — Sing(R (X)) (3.21)

is a birational automorphism of the Hessian hypersurface. We have noticed this
already in Chapter 1.

Proposition 3.2.2 AssumeX has only isolated singularities. Théife(X) =
P if and only if X is a cone over a cubic hypersurfaceRfi—!.

Proof LetW = {(a,b) € P" x P" : P, ;2(X) = 0}. For eactu € P", the
fibre of the first projection over the poiatis equal to the first polaP, (X).

For anyb € P™, the fibre of the second projection over the pdiris equal

to the second polaP,:(X) = V(3 9;f(b)t;). LetU = P \ Sing(X). For
any b € U, the fibre of the second projection is a hyperplanéin This
shows tha[o;l(U) is nonsingular. The restriction of the first projectionlfo

is a morphism of nonsingular varieties. The general fibre of this morphism is
a regular scheme over the general poinPdf Since we are in characteristic

0, it is a smooth scheme. Thus there exists an open slidset P™ such
thatp; ' (W) N U is nonsingular. If He(X = 0, all polar quadricsP, (X ) are
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singular, and a general polar must have singularities insigg bfSing(X)).
This means thap, (p; * (Sing(X))) = P™. For anyz € Sing(X), all polar
guadrics contain: and either all of them are singular ator there exists an
open subsel/, ¢ P™ such that all quadric®,(X) are nonsingular at for

a € U,. Suppose that, for any € Sing(X), there exists a polar quadric which
is nonsingular at. Since the number of isolated singular points is finite, there
will be an open set of poinis € P™ such that the fibrp;l(a) is nonsingular in
py (Sing(X)). This is a contradiction. Thus, there exists a poirt Sing(X)
such that all polar quadrics are singularaflhis implies that: is a common
solution of the systems of linear equations Hg(¢) - X = 0,a € P™. Thus
the first partials off; are linearly dependent. Now we apply Propositioh.2
to obtain thatX is a cone. O

Remark3.2.1 The example of a cubic hypersurfac@®frifrom Remarkl.1.2
shows that the assumption on singular pointsfo€annot be weakened. The
singular locus of the cubic hypersurface is the plane t; = 0.

3.2.2 The Hessian of a plane cubic

Consider a plane cubi€ = V() with equation in the Hesse canonical form
(3.7). The partials of f are

2+ 2atity, 13+ 2atoty, 5+ 2atoty. (3.22)
Thus the Hessian @' has the following equation:
to Oztg Oétl
He(C) = |aty 1 ato| = (1 +2a°)totits — (13 + 15 +13). (3.23)
at1 Ozto t2
In particular, the Hessian of the member of the Hesse pencil corresponding to
the parametef), 1) = (1,6a), « # 0, is equal to
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3
£ 4+13 413 - Tatotltz -0, a#0, (3.24)

or, if (A, ) = (1,0) or (0, 1), then the Hessian is equal ¥(tot1t2).

Lemma 3.2.3 LetC be a nonsingular cubic in a Hesse’s canonical form. The
following assertions are equivalent:

(i) dimSing(E,(C)) > 0;

(i) a € Sing(He(O);

(i) He(C) is the union of three nonconcurrent lines;
(iv) Cisisomorphic to the Fermat cubic (¢ + 3 + t3);
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(v) He(C) is a singular cubic;
(vi) C'is an equianharmonic cubic;
(vii)) a(a®—-1)=0.

Proof Use the Hesse equation for a cubic and for its Hessian. We see that
He(C) is singular if and only if eithery = 0 or 1 + 8(7127233)3 = 0. Ob-
viously, « = 1 is a solution of the second equation. Other solutionsea&

This corresponds to He(;whereC is of the formV (3 + ¢ +t3), or is given

by the equation

3+ 15 + 13 + 6e'totrita = (€'to + et +t2) + (to + €'ty + t2)?

+(t0 + tl 4+ 6%2)3 = O7
wherei = 1,2, or

1313 13 + Gtotity = (to +t1 +t2)> + (to + ety + €*to)?

+(t0 + €2t1 —|— 6t2)3 = 0

This computation proves the equivalence of (iii), (iv), (v), and (vii).
Assume (i) holds. Then the rank of the Hessian matrix is equal to 1. Itis easy
to see that the first two rows are proportional if and only(f® — 1) = 0.
Thus (i) is equivalent to (vii), and hence to (iii), (iv), (v) and (vii). The paint
is one of the three intersection points of the lines such that the cubic is equal to
the sum of the cubes of linear forms defining these lines. Direct computation
shows that (ii) holds. Thus (i) implies (ii).
Assume (i) holds. Again the previous computations showdifaf — 1) =
0 and the Hessian curve is the union of three lines. Now (i) is directly verified.
The equivalence of (iv) and (vi) follows from Theoredri.1since the trans-
formation|[to, t1,ts] — [t1,t0, €>™/3t,] generates a cyclic group of order 6 of
automorphisms of” leaving the pointl, —1, 0] fixed. O

Corollary 3.2.4 Assume thaC' = V(f) is not projectively isomorphic to
the Fermat cubic. Then the Hessian cubic is nonsingular, and theanap
Sing(FR,(C)) is an involution onC' without fixed points.

Proof The only unproved assertion is that the involution does not have fixed
points. A fixed pointz has the property thab, (D, (f)) = D42(f) = 0. It
follows from Theorenti.1.1that this implies that € Sing(C). O

Remark3.2.2 Consider the Hesse pencil of cubics with paraméters) =
(ao,60r1)

Clag.a) = V(ao(td + 3 +13) + 6artotits).
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Taking the Hessian of each curve from the pencil we get the pencil
H{nga) = Viaoty + 6 + 13 + 6 totits).
The mapCiy,a) — H(a,,a) defines a regular map
h:P' =P [ag,a1] = [to, t1] = [~aoad, af + 2a7]. (3.25)

This map is of degre®. For a general value of the inhomogeneous parameter
A = t1/to, the preimage consists of three points with inhomogeneous coordi-
natea = oy /« satisfyfing the cubic equation

6 a® — 2% +1=0. (3.26)

We know that the pointgyg, a;] = [0,1], [1, — 3], [1, — %], [1, —%] correspond
to singular members of the-pencil. These are the branch points of the hap

Over each branch point we have two points in the preimage. The points
(0407 041) = [1>O]a [L 1}7 [17 6]5 [1’ 62}

are the ramification points corresponding to equianharmonic cubics. A non-
ramication point in the preimage corresponds to a singular member.

Let Co, = C(1,4)- If we fix a group law on aH, = He((), we will be
able to identify the involution described in CorollaBy2.4 with the transla-
tion automorphism by a non-trivial 2-torsion poin{see Exercises). Given a
nonsingular cubic curvél together with a fixed-point-free involution there
exists a unique nonsingular cubig, such thatd = H, and the involution
7 is the involution described in the corollary. Thus the 3 roots of the equation
(3.26) can be identified with 3 non-trivial torsion points éf,. We refer to
Exercises for a reconstruction 6%, from the pair(H,, ).

Recall that the Cayleyan curve of a plane cubids the locus of line®q
in the dual plane such that € He(C) andb is the singular point of>, (C).
Each such line intersects Hej@t three points, b, c¢. The following gives the
geometric meaning of the third intersection point.

Proposition 3.2.5 Letc be the third intersection point of a linee Cay(C)
andHe(C). Then? is a component of the poldr,;(C) whose singular point is
c. The pointd is the intersection point of the tangentstté(C) at the points:
andb.

Proof From the general theory of linear system of quadrics, applied to the net
of polar conics of”, we know that is a Reye line, i.e. it is contained in some
polar conicP;(C) (see subsectioh.1.7). The pointl must belong to He(¢"

and its singular point belongs to/. Thusc is the third intersection point af

with C.
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It remains to prove the last assertion. Chose a group law on the curve)He(C
by fixing an inflection point as the zero point. We know that the Steinerian
involution is defined by the translatian— x & n, wheren is a fixed 2-torsion
point. Thusb = a @ 7. It follows from the definition of the group law on a
nonsingular cubic that the tangerits(He(C)) andT,(He(C)) intersect at a
point d on He(C). We haved @ 2a = 0, henced = —2a. Sincea, b, ¢ lie
on a line, we get = —a — b in the group law. After subtracting, we get
d —c = b—a = n. Thus the pointsc andc is an orbit of the Steinerian
involution. This shows that is the singular point ofP;(C). By Proposition
1.2.3,P,(C) contains the points, b. Thusab is a component ofP;(C). O

It follows from the above Proposition that the Cayleyan curve of a nonsin-
gular cubicC' parameterizes the line components of singular polar conics of
C. Itis also isomorphic to the quotient of He[®y the Steinerian involution
from Corollary3.2.4. Since this involution does not have fixed points, the quo-
tient map He(g — Cay(C) is an unramified cover of degree 2. In particular,
Cay(C) is a nonsingular curve of genus 1.

Let us find the equation of the Cayleyan curve. A lingelongs to Cay(X
if and only if the restriction of the linear system of polar conicsXofto ¢
is of dimension 1. This translates into the condition that the restriction of the
partials of X to ¢ is a linearly dependent set of three binary forms. So, write
¢ in the parametric form as the image of the nlp— P? given by[u, v] —

[apu + bov, a1u + b1v, asu + bav]. The condition of the linear dependence is
given by

a2 +2aaias  2a0bg + 2a(a1bs + azby)  bZ + 2ab1bs
det | a} + 2aapas  2a1by + 2a(aghs + azby) b3 + 2abgby | = 0.
a3 +2aapa;  2azby + 2a(aghy + a1by) b3 + 2abgby

The coordinates of in the dual plane are
[uo, u1, ug] = [a1bs — agby, azby — apba, agbr — a1b).

Computing the determinant, we find that the equation of Cayifthe coor-
dinatesug, u1, us IS

ud 4+ ud 4 ud + 60 uguup = 0, (3.27)

wherea’ = (1 — 4a3)/6a. Note that this agrees with the degree of the Cay-
leyan curve found in Propositiah1.14. Using the formula (3.9) for the abso-
lute invariant of the curve, this can be translated into an explicit relationship
between the absolute invariant of an elliptic cutvend the isogenous ellip-

tic curve C/(7.), wherer, is the translation automorphism by a non-trivial
2-torsion pointe.
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3.2.3 The dual curve

Write the equation of a general line in the fotm = gty + u1t; and plug
in equation (3.7). The corresponding cubic equation has a multiple root if and
only if the line is a tangent. We have

(ugto 4+ uit1)® +t3 + 13 4 6atoty (uoto + uity)

= (ud +1)t3 4 (u} + 1)t3 + (Budug + 6aug)tit, + (Bugu? + 6auy )tot: = 0.

The condition that there is a multiple root is that the discriminant of the homo-
geneous cubic form ity, ¢1 is equal to zero. Using the formula.81) for the
discriminant of a cubic form, after plugging in, we obtain

(Bugu+60m0)? (Buoul +6aur ) > +18(3ugu +60uo) (3uoul +6aur ) (ui+1) (ui+1)
—4(up + 1) (Buous + 60u1)® — 4(u? + 1) (Burug + 60u)® — 27(uf + 1) (uf +1)°
= —27 + 864uduio® + 648uduio — 648a uou] — 648a uguy + 648a uous
+1296a ugud — 27us — 27ud + 5dudud — 864uda® — 864uia® — 54ud — 5dud = 0.

It remains to homogenize the equation and divide(by7) to obtain the
equation of the dual curve

up +ug +u3 — (2 +320°) (ugud +ugus + ujuy)
—240”uguiug (uf + ui +u3) — (24a 4 48a* )uduiuz = 0. (3.28)

According to the Ricker formula (1.50), the dual curve of a nonsingular plane
cubic has 9 cusps. They correspond to the inflection tangents of the original
curve. The inflection points are given in (3.12). Computing the equations of
the tangents, we find the following singular points of the dual curve:

[—2m,1,1], [1, —2a, 1], [1,1,—2a], [-2ae,&%,1], [2ag, 1,£7],

(€2, —2ae, 1], [1, —20ag,%], [1,€%, —2ae], [€2,1, —2a].

The tangent of” at an inflection point. is a component of the polar conic
P,(C), hence connecisto the singular point of the polar conic. This implies
that the tangent line belongs to the Cayleyan curve Cayt€nce the Cay-
leyan curve contains the singular points of the dual cubic. The pencil of plane
curves of degree 6 spanned by the dual cdbicand the Cayleyan cubic taken
with multiplicity 2 is an example of aRrlalphen pencibf index 2 of curves of
degree 6 with 9 double base points (see Exercises to Chapter 7).
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3.2.4 Polar s-gons

Since, for any three general pointsid, there exists a plane cubic singular at
these points (the union of three lines), a general ternary cubic form does not
admit polar triangles. Of course this is easy to see by counting constants.

By Lemma3.2.3, a nonsingular cubic admits a polar triangle if and only if it
is an equianharmonic cubic. Its polar triangle is unique. Its sides are the three
first polars ofC which are double lines.

Proposition 3.2.6 A plane cubic admits a polar triangle if and only if either
itis a Fermat cubic or it is equal to the union of three distinct concurrent lines.

Proof Suppose” = V(I3 + I3 + [3). Without loss of generality, we may as-
sume that; is not proportional td;. Thus, after a linear change of coordinates,

C =Vt +t3 +13).If I(to, t1,t2) does not depend am, the curveC is the

union of three distinct concurrent lines. Otherwise, we can change coordinates
to assume thdt= ¢, and get a Fermat cubic. O

By counting constants, a general cubic admigkar quadrangle. Itis clear
that a polar quadranglgl], . . ., [l4] } is nondegenerate if and only if the linear
system of conics in the dual plane through the pdihtss an irreducible pencil
(i.e. alinear system of dimension 1 whose general member is irreducible). This
allows us to define aondegenerate generalized polar quadrangfe” as a
generalized quadranglé of C such tha{Z,(2)| is an irreducible pencil.

Let g(to,t1) be a binary form of degree 3. Its polar 3-hedron is the divisor
of zeros of its apolar form of degree 3. Thus

VSP(g,3) = |AP3(g)[" = P2, (3.29)

This implies that any ternary cubic forf= t3 + g(to, t1) admits degenerate
polar quadrangles.

Also, if C' = V(g(to,t1)) is the union of three concurrent lines then any
four distinct nonzero linear formg, l», 3,14 form a degenerate quadrangle
of C. In fact, using the Van der Monde determinant, we obtain that the cubes
13,13,13,13 form a basis in the space of binary cubic forms. So the variety
of sums of 4 powers of' is isomorphic to the variety of 4 distinct points in
PL. Its closure VSP(C4) in the Hilbert scheme Hilb(P?) is isomorphic to
(Pl)(4) o~ P4.

Lemma 3.2.7 C admits a degenerate polar quadrangle if and only if it is one
of the following curves:

(i) an equianharmonic cubic;
(i) a cuspidal cubic;
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(i) the union of three concurrent lines (not necessary distinct).
Proof We only have to prove the converse. Suppose
f=0+05+105+13

wherely, I3, I3 vanish at a common poimtwhich we identify with a vector in
E. We have
1

gDa(f) =11(a)l3 + Ia(a)l3 + 13(a)l2 + 14(a)l] = l4(a)l?.

This shows that the first pold?, (V (f)) is either the wholé?? or the double
line 2¢ = V(13). In the first caseC is the union of three concurrent lines.
Assume that the second case occurs. We can choose coordinates such that
[0,0,1] and? = V (t2). Write

f = g0t + g1t3 + gato + f,

whereg;, are homogeneous forms of degfeia variables, t1. ThenD,(f) =
Do f = 3t3g0 + 2t2g1 + go. This can be proportional t& only if g; = g, =
0,90 # 0. ThusV (f) = V(got3 + g3(to,t1)). If g3 has no multiple linear fac-
tors, we get an equianharmonic cubicgdfhas a linear factor with multiplicity
2, we get a cuspidal cubic. Finally, f§ is a cube of a linear form, we reduce
the latter to the fornt$ and get three concurrent lines.

O

Remark3.2.3 We know that all equianharmonic cubics are projectively equiv-
alent to the Fermat cubic. The orbit of the Fermat cubie; + 3 + t3) is
somorphic to the homogeneous space PSL(3) /G, whete (Z/37Z)? x &3.

Its closure in|S3(EY)| is a hypersurfacé’ and consists of curves listed in the
assertion of the previous Lemma and also reducible cubics equal to the unions
of irreducible conics with its tangent lines. The explicit equation of the hyper-
surfaceF' is given by theAronhold invariantS of degree 4 in the coefficients of

the cubic equation. A nice expression for the invarisim terms of a pfaffian

of a skew-symmetric matrix was given by G. Ottaviani [462].

Lemma 3.2.8 The following properties are equivalent:

(i) AP.(f) # {0}
(i) dimAPy(f) > 2;
(i) V(f) is equal to the union of three concurrent lines.

Proof By the apolarity duality,
(Ap)r x (Ap)2 = (Ap)s = C,
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we have

Thusdim APy (f) = 3 + dim APy (f). This proves the equivalence of (i) and
(ii). By definition, AP, (f) # {0} if and only if D,,(f) = 0 for some nonzero
linear operatot) =} a;0;. After alinear change of variables, we may assume
thaty = 9y, and therdy (f) = 0 if and only if C does not depend ap, i.e.C

is the union of three concurrent lines. O

Lemma 3.2.9 Let Z be a generalized polar quadrangle ¢f Then|Z;(2)|

is a pencil of conics ifE"| contained in the linear systetAP,(f)|. If Z is
nondegenerate, then the pencil has no fixed component. Conversglydet
0-dimensional cycle of length 4 jiZ|. Assume thalZz(2)| is an irreducible
pencil contained inAPy(f)|. ThenZ is a nondegenerate generalized polar
guadrangle off.

Proof The first assertion follows from the definition of nondegeneracy and
Proposition1.3.6. Let us prove the converse. 1éf\q; + uge) be the pencil
of conics|Zz(2)|. Since AP(jj is an ideal, the linear systemof cubics of the
form V(q1l1 + gol2), wherely, [, are linear forms, is contained {AP5(f)|.
Obviously, it is contained itiZz(3)|. Since|Zz(2)| has no fixed part we may
choosey; andg, with no common factors. Then the m&y ¢ EY — I(3)
defined by(ly,13) — qili + g=l2 is injective, hencelim L = 5. Assume
dim |Zz(3)| > 6. Choose three points in general position on an irreducible
memberC of |Zz(2)| and three non-collinear points outside Then find a
cubic K from |Zz(3)| which passes through these points. THénntersects
C with total multiplicity 4 + 3 = 7, hence containg'. The other compo-
nent of K must be a line passing through three non-collinear points. This
contradiction shows thatim |Zz(3)| = 5 and we havel. = |Zz(3)|. Thus
|Zz(3)| C |APs(f)| and, by Propositioil.3.6,7 is a generalized polar quad-
rangle ofC'.

O

Note that not any point in HiIH]P’Q) can be realized as a generalized quad-
rangle of a ternary cubic. Each point in the Hilbert scheme‘*rd]FPB) is the
union of subschemes supported at one point. Let us recall analytic classifica-
tion closed of subschem@g§(I) of lengthh < 4 supported at one point (see
[56]).
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o h=4:1=(z,y"), (2% ¢?), (2 zy,°).

The subschemes of length 4 which cannot be realized as the base scheme
of a pencil of conics, are those which contain a subscheme analytically iso-
morphic to one of the following schemés(x, 33), V (z, y*), V (2?2, 2y, y?),
or V(x?, xy, y°).

Theorem 3.2.10 Assume tha€ is neither an equianharmonic cubic, nor a
cuspidal cubic, nor the union of three concurrent lines. Then

VSP(f,4) = |APy(f)|V = P2

If C'is nonsingular, the complement&f= VSP(f,4) \ VSP(f,4)° is a curve

of degree 6 isomorphic to the dual of a nonsingular cubic curn&.if a nodal
cubic, thenA is the union of a quartic curve isomorphic to the dual quartic of
C and two lines. I{”' is the union of a nonsingular conic and a line intersecting
it transversally,A is the union of a conic and two lines.df is the union of a
conic and its tangent line, theth = VSP(f,4).

Proof We will start with the case whe@' is nonsingular. We know that its
equation can be reduced to the Hesse canonical form (3.7). The space of apolar
quadratic forms is spanned byugu; — u3, qujus — ud, augus — u?. Itis

equal to the net of polar conics of the cu@éin the dual plane given by the
equation

us +ui 4 uh — 6auguiug =0, afa® —1) #0. (3.30)

The net|APy(f)| is base point-free. Its discriminant curve is a nonsingular
cubic, the Hessian curve of the curgé. The generalized quadrangles are pa-
rameterized by the dual curve He()?. All pencils are irreducible, so there are
no degenerate generalized quadrangles. Generalized quadrangles correspond
to tangent lines of the discriminant cubic. So,

VSP(f.4) = |AP ()|, (3.31)

and VSP(f4) \ VSP(f,4)° = He(C")V.

Next, assume that = V (t3tg + t3 + t3t,) is an irreducible nodal cubic.

The space of apolar quadratic forms is spannedhy; uz, 03 —u? +3ugus.
The net|AP;(f)| is base point-free. Its discriminant curve is an irreducible
nodal cubicD. So, all pencils are irreducible, and (3.31) holds. Generalized
guadrangles are parameterized by the union of the dual quartic £uhand
the pencil of lines through the double point.

Next, assume that' = V (t3 + tot1t2) is the union of an irreducible conic
and a line which intersects the conic transversally.
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The space of apolar quadratic forms is spanned®y:3, 6ujus — u3. The
net|APy(f)| is base point-free. It is easy to see that its discriminant curve is
the union of a conic and a line intersecting the conic transversally. The line
component defines the pencil generated/y?) andV (u3). It has no fixed
part but its members are singular. So, all generalized quadrangles are nonde-
generate and (3.31) holds. The locus of generalized quadrangles consists of a
conic and two lines.

Next, assume that' (f) = V(tot1t2) is the union of three non-concurrent
lines.

The net AP, (f)| of apolar conics is generated bY(u3), V (u?), V (u3). Itis
is base-point-free. The discriminant curve is the union of three non-concurrent
lines representing pencils of singular conics which have no fixed component.
Thus any pencil not containing a singular point of the discriminant curve de-
fines a nondegenerate polar quadrangle. A pencil containing a singular point
defines a nondegenerate generalized polar quadrangle. Ajai) holds and
VSP(f,4) \ VSP(f,4)° consists of three nonconcurrent lines.

Finally, letC' = V (to(tot1 + t3)) be the union of an irreducible conic and
its tangent line. We check that APf) is spanned byu?, ujua, u3 — uguy.
The discriminant curve is a triple line. It corresponds to the peri¢iu? +
wuiug) of singular conics with the fixed componénitu, ). There are no polar
guadrangles. Consider the subschefra degree 4 in the affine open set #
0 defined by the ideal supported at the pdinto, 0] with ideal at this point
generated by(u; /ug)?, ujuz/u3, and (uz/ug)?. The linear systemZz(3)]
is of dimension 5 and consists of cubics of the fovffwgu; (au; + bus) +
g3(u1,u2)). One easily computes APf). It is generated by the polynomial
upu3 — uduy and all monomials excepfu; andugu3. We see thalZ,(3)|
|APs(f)|. ThusZ is a degenerate generalized polar quadrangié afd (3.31)
holds.

O

Remark3.2.4 We know already the variety VSP4J,in the case whei

is the union of concurrent lines. In the remaining cases which have been ex-
cluded, the variety VSP(4) is a reducible surface. Its description is too in-
volved to discuss it here. For example(ifis an equianharmonic cubic, it
consists of four irreducible components. Three components are isomorphic to
P2, They are disjoint and each contains an open dense subset parametrizing
degenerate polar quadrangles. The fourth component contains an open subset
of base schemes of irreducible pencils of apolar conics. It is isomorphic to the
blow-up of |[AP,|V at three points corresponding to reducible pencils. Each of
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the first three components intersects the fourth component along one of the
three exceptional curves.

3.3 Projective generation of cubic curves

3.3.1 Projective generation
Suppose we have: differentr-dimensional linear systemg;| of hypersur-

faces of degreeg; in P™. Choose projective isomorphisnts P" — |L;| and
consider the variety

Z={\z)eP" xP":xep(AN)N...N0dIm(N)}. (3.32)
The expected dimension of a general fibre of the first projection gr— P"

is equal ton — m. Assume

e 7 isirreducible of dimension +n —m
¢ the second projection pr Z — P" is of finite degreé: on its imageX.

Under these assumptionk, is an irreducible subvariety of dimension- n —
m.

Proposition 3.3.1
deg X = s,(dy,...,dm)/k.

wheres,. is ther-th elementary symmetric functionsim variables.

Proof It is immediate thatZ is a complete intersection iB" x P"™ of m
divisors of type(1, d;). LetII be a general linear subspacePifi of codimen-
sionn — m + r. We use the intersection theory from [253]. llgtandh, be
the natural generators @f2(P" x P",Z) equal to the preimages of the co-
homology classes,, hy of a hyperplane ifP” andP", respectively. We have
(pry)«([Z]) = k[X]. By the projection formula,

(pry)+ ([Z]) = (pry)« ([ [ (1 + djh2)) = (Pr)« (D s5(d, ..., dm) R R5 )
j=1 j=1
= si(di, ... dm)B 7 (pry)(R]) = sp(da, ... dm) B3
7j=1
Intersecting withh; ~™*", we obtain thak deg X = s,(dy, ..., dn).
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Since through a general point ifi* passes a unique member of a pencil,
kE=1ifr=1.

The following example iSteiner’'s constructiomf rational normal curves
of degreen in P™. We have used it already in the case of conics referring for
the details to [295].

Example3.3.1 Letr = 1,m =nandd; = ... =d, = 1. Letpy,...,p,

be linearly independent points " and letP; be the pencil of hyperplanes
passing through the codimension 2 subspace spanned by all points gxcept
Choose a linear isomorphism : P! — P; such that the common hyperplane
H spanned by all the points corresponds to different paramaterg*.

Let H;(A) = ¢;(\). A line contained in the intersectiol;(A\) N ... N
H, (\) meetsH, and hencéd meets eacltt;()\). If H is different from each
H;()), this implies that the base loci of the pencis meet. However this
contradicts the assumption that the pointare linearly independent. i =
H,(\) for somei, thenH N H; () is equal to the base locus Y. Thus the
intersectionH(A\)N...NH, (\) consists of the poini;. This shows that, under
the first projection pr: Z — P!, the incidence variety (3.32) is isomorphic to
P! . In particular, all the assumptions on the pengijsire satisfied witl = 1.
Thus the image of in P" is a rational curveR,, of degreen. If ¢;(\) = H,
then the previous argument shows that R,,. Thus all pointsy, ..., p, lie
on R,,. Since all rational curves of degreein P"* are projectively equivalent,
we obtain that any such curve can be projectively generated fpgncils of
hyperplanes.

More generally, lef,, ..., P,, ben pencils of hyperplanes. Since a projec-
tive isomorphismy; : P* — P; is uniquely determined by the images of three
different points, we may assume thai{\) = V(\ol; + A\ym;) for some lin-
ear formg;, m;. Then the intersection of the hyperplarggi) N ... N ¢, (N)
consists of one point if and only if the systemrofinear equations with + 1
unknowns

)\0l1 + /\1m1 =...= Aoln + >\1Tﬂn =0
has a one-dimensional space of solutions. Under some genericity assumption
on the choice of the pencils, we may always assume it. This shows that the

rational curveR,, is projectively generated by the pencils, and its equations
are expressed by the condition that

rank(lo Lo ... ln>§1.

mo M1 ... Mp

Observe that the maximal minors of the matrix define quadri@‘iof rank
<d4.
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Example3.3.2 Take two pencil®; of planes inP? through skew lineg;.
Choose a linear isomorphisgn: P! — P;. Then the union of the lines; ()N
#2(\) is equal to a quadric surface#¥ containing the lineg;, /5.

3.3.2 Projective generation of a plane cubic

We consider a special case of the previous construction whete2,r = 1
andm = 2. By Lemma3.3.1,X is a curve of degreé; + d». Assume that the
base locus of the pendi; consists ofi? distinct points and the two base loci
have no points in common. It is clear that the union of the base loci is the set
of d? + d3 points onX.

Take a pencil of line$, and a pencil of conic®,. We obtain a cubic curve
C containing the base point of the pencil of lines and 4 base points of the pencil
of conics. The penciP, cuts out onC' a g;. We will use the following.

Lemma 3.3.2 For any g3 on an irreducible reduced plane cubic curve, the
lines spanned by the divisor from intersect at one point on the curve.

Proof The standard exact sequence
0 — Op2(—2) — Op2(1) — Oc(1) — 0

gives an isomorphisnt/® (P2, Op= (1)) = H°(C,Oc(1)). It shows that the
pencil g3 is cut out by a pencil of lines. Its base point is the point whose exis-
tence is asserted in the Lemma. O

The point of intersection of lines spanned by the divisors frop} avas
called by Sylvester theoresidual poinbf C (see [538], p. 134).

Let C' be a nonsingular plane cubic. Pick up four points@mo three of
them lying on a line. Consider the pencil of conics through these pointsg. Let
be the coresidual point of thg on C defined by the pencil. Then the pencil
of lines throughy and the pencil of conics projectively generéte

Note that the first projection pr: Z — P! is a degree 2 cover defined by
the g2 cut out by the pencil of conics. It has 4 branch points corresponding to
lines 1 (A) which touch the conigs ().

There is another way to projectively generate a cubic curve. This time we
take three nets of lines with fixed isomorphismsto P2. Explicitly, if A\ =
oA, de] € B2 andg;(\) = V(al to + ai”t1 + afts), wherea!” are
linear forms in\g, A1, A2, thenC' is given by the equation

(lgl) a(ll) (1(21)
det a((jz) agz) a§2) =0.

aé?)) ag?)) aéS)
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This is an example of a determinantal equation of a plane curve which we will
study in detail in the next Chapter.

3.4 Invariant theory of plane cubics

3.4.1 Mixed concomitants

It allows one to relate the invariant theory of homogeneous forms in1
variables to the invariant theory of homogeneous forms Variables. Lett,
as usual, denote a complex vector space of dimensienl. Recall that the
main object of study in the invariant theory israxed combinantan element
® of the tensor product

r k s
R 5™ (S(BY)" @ Q) 5™ (BY) & @) 5 (F)
i=1 i=1 i=1

which is invariant with respect to the natural linear representation of $L(E
on the tensor product. We will be dealing here only with the cases when
1,k,s < 1.1f k = s = 0, ® is aninvariantof degreen, on the spac&?(EV).

If £ =1,s=0,thend is acovariantof degreen and ordep. If k = 0,s =1,
then® is acontravariantof degreem and clasg;. If K = s = 1, then® is a
mixed concomitarf degreemn, orderp and clasg;.

Choosing a basisy, . .. ,u, in E, and the dual basis, .. .,t, in EV, one
can write an invarian® ¢ S™(S%(EY))Y = S™(S%(E)) as a homogeneous
polynomial of degreen in coefficients of a general polynomial of degrée
in ug, ...,u, which are expressed as monomials of degtée ug, ..., u,.

Via polarization, we can consider it as a multihomogeneous function of degree
(d,...,d)on (E*)™. Symbolically, it is written as a product af sequences

(1 . ..1n) of numbers fron{1, ..., m} such that each number appedtsnes.

The relation

(n+1)w=md

must hold. In particular, there are no invariants i 1 does not dividend.
The numberw is called theweightof the invariant. When we apply a linear
transformation, it is multiplied by the-th power of the determinant.

A covariant® € S™(S4(EY))Y ® SP(EY) can be written as a polynomial
of degreem in coefficients of a general polynomial of degréand of degree
pin coordinatesy, .. ., t,. Via polarization, it can be considered as a multiho-
mogeneous function of degréé, ..., d,p) on (EY)™ x E. Symbolically, it
can be written as a product efexpressionsj . . . j, ) andp expressionsi).,
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where each number frof, ..., m} appearsl times. We must have
(n+ Dw+pn =md.

A contravariantb € S™(S4(EY))Y®S59(E) can be written as a polynomial
of degreem in coefficients of a general polynomial of degréand of degree
qinuo,...,u,. Via polarization, it can be considered as a multihomogeneous
function of degreéd, ..., d, q) on (EY)™ x EY. Symbolically, it can be writ-
ten as a product af expressionsj . . . j, ) andg expressions$i . . . i, ),. We
have

(n+ Dw + gn = md.

A mixed concomitan® € S™(S4(EY))Y®SP(EY)®S5(E) can be written
as a polynomial of degree in coefficients of a general polynomial of degree
d, of degreep in ¢, ..., t,, and of degree in ug, . .., u,. Via polarization, it
can be considered as a multi-homogeneous function of dédree , d, p, q)
on(EY)™x E x EV. Symbolically, it can be written as a productofexpres-
sions(jo, - - ., jn), p €Xpressionsi), andq expressiongiy, ..., i, ), Where
each number from1,..., m} appearsl times. We have

(n+ Dw+ (a+b)n =md.

Note that instead of humbeis. .., m classics often employed letters
a,b,c,. ...

For example, we have met already the Aronhold invarigrasd T of de-
grees 4 and 6 of a ternary cubic form. Their symbolic expressions are

S = (123)(124)(134)(234) = (abc)(abd)(acd)(bed),
T = (123)(124)(135)(256)(456)* = (abc)(abd)(ace)(bef)(def)?.

3.4.2 Clebsch’s transfer principle

It allows one to relate invariants of polynomialsirvariables to contravariants
and covariants of polynomials im+ 1 variables.

Start from an invarian® of degreemn on the spacé((C")V) of homoge-
neous polynomials of degreg We will “transfer it” to a contravarian® on
the space of polynomials of degréén n + 1 variables. First we fix a volume
formw on E. A basis in a hyperplan& C FE defines a linear isomorphism
C" — U. We call a basis admissible if the pull-back of the volume form un-
der this linear map is equal to the standard volume feym ... A e,,. For
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any « € EVY, choose an admissible bagisy, ...,v%) in Ker(«). For any
(I1,...,lm) € (EY)™, we obtainn vectors inC", the columns of the matrix
Lvy) oo Ipn(v)
A=
L(vY) .. ()

The value of® on this set of vectors can be expressed as a linear combination
of the product of maximal minonsd;|, where each column occudstimes. It

is easy to see that each mindy, , isequaltothevaluedf, A... Al €

A" EY on vit A ... Awt under the canonical pairing

/n\va/n\E—>(C.

Our choice of a volume from oR allows us to identify\" E with EV. Thus

any minor can be considered as multilinear function &)™ x EV and its
value does not depend on the choice of an admissible basis in Ker(«). Symbol-
ically, (i1 . ..1,) becomes the bracket expressian. . . i,,),. This shows that

the invariant®, by restricting to the subspaces Kej(defines a contravariant

® on S4(EY) of degreem and clasg = md/n.

Example3.4.1 Let® be the discriminant of a quadratic formvirvariables. It

is an invariant of degres» = n on the space of quadratic forms. Its symbolic
notation is(12...n)2. Its transfer taP" is a contravarian® of degreen and
classq = 2n/n = 2. Its symbolic notation i§12...n)2. Considered as map
d : S2EY — S?E, the value of®(¢) onu € EVY is the discriminant of the
quadratic form obtained from restriction gfto Ker(u). It is equal to zero if
and only if the hyperplan® () is tangent to the quadric (¢). ThusV (®(q))

is the dual quadrié’(q)".

Example3.4.2 Consider the quadratic invariasiton the space of binary
forms of even degred = 2k with symbolic expressiori12)2*. We write a
general binary forny € S¢(U) of degreal symbolically,

f = (&oto + &1t1)%F = (noto +mt1)?*,

where(o, &1) and(no, m1) two copies of a basis it and(to, ¢1) its dual basis.
Then the coefficients of are equal tq¢)a;, wherea; = ¢J¢7* 7 = nf" .

ThusS is equal to

2k

(Com — &mo) = Z(—l)j (ij) (om ) (&amo) 7

=0
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2k

= S0 (R E ) mme" )

7=0
2k ) k ]
= Z(—l)j (?)ajagk_j = 2( (—1)] (zjk)ajazk_j + %(2kk)ai>.
Jj=0 j=0

We have already encountered this invariant in the dase3 (see subsection
1.5.1).

The transfer of is the contravariant of degree 2 and cldssith symbolic
expressionabu)?. For example, whed = 4, its value on a quartic ternary
form f is a quartic form in the dual space which vanishes on lines which cut
onV(f) in a harmonic set of 4 points. The transfeof the invariant of degree
3 on the space of quartic binary forms defines a contravariant of ¢ldss
value on a quartic ternary form is a ternary form of degree 6 in the dual space
which vanishes on the set of lines which cut ouifif) an equianharmonic
set of 4 points.

One can also define Clebsch’s transfer of covariants of degraed order
p, keeping the factors, in the symbolic expression. The result of the transfer
is a mixed concomitant of degree, orderp and classnd/n.

3.4.3 Invariants of plane cubics

Since this material is somewhat outside of the topic of the book, we state some
of the facts without proof, referring to classical sources for the invariant theory
(e.g.[125], t. 2, [538]).

We know that the ring of invariants of ternary cubic forms is generated by
the Aronhold invariant§ andT. Let us look for covariants and contravariants.
As we know from subsectioh.5.1, any invariant of binary form of degree 3 is
a power of the discriminant invariant of order 4, and the algebra of covariants
is generated over the ring of invariants by the identical covatiantf — f,
the Hessian covariari of order 2 with symbolic expressiofub)a,.b,, and
the covariantl = Jac(fH) of degree 3 and order 6 with symbolic expression
(ab)?(ca)b,c?. Clebsch’s transfer of the discriminant is a contravariamf
degreet and class. Its symbolic expression i&bu)? (cdu)?(acu)(bdu). Its
value on a general ternary cubic form is the form defining the dual cubic curve.
Clebsch's transfer dfl is a mixed concomitar® of degree2, order 2 and class
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2. Its symbolic expression {&bu)?a.b,. Explicitly, up to a constant factor,

foo for foz wo

fio fuur fiz w
© = det , 3.33
¢ f20 f21 f22 U2 ( )

Uuop (751 (%) 0

wheref;; = %@'@j-

The equationO(f,z,u) = 0, for fixed z, is the equation of the dual of
the polar conicP,(V (f)). The equatior®(f,z,u) = 0, for fixed v, is the
equation of the locus of points such that the first polaP, (V' (f)) is tangent
to the lineV (u). Itis called thepoloconicof the lineV (). Other description
of the poloconic can be found in Exercises.

The Clebsch’s transfer of is a mixed concomitan® of degree3, or-
der 3 and class 3. Its symbolic expressionidéu)?(cau)c2b,. The equation
Q(f,z,u) = 0, for fixed u, is the equation of the cubic curve such that second
polars of P,(V(f)) of its points intersect (u) at a point conjugate to with
respect to the poloconic &f (). A similar contravariant is defined by the con-
dition that it vanishes on the set of pajrs ) such that the lind’ (u) belongs
to the Salmon envelope conic of the polarscofith respect to the curve and
its Hessian curve.

An obvious covariant of degree 3 and order 3 is the Hessian determinant
H = det He(f). Its symbolic expression i&bc)?a,b,c,. Another covarianG
is defined by the condition that it vanishes on the locus of paistsch that the
Salmon conic of the polar of with respect to the curve and its Hessian curve
passes through. It is of degree8 and ordert. Its equation is the following
bordered determinant

foo for foz ho
fio fu1 fiz M

foo for fa2 ho
ho hi he O

wheref;; = afjg;j ,hy = 25 (see [80],[125], t. 2, p. 313). The algebra of
covariants is generated iy, H, G and theBrioschi covarian{58]. J(f,H, G)

whose value on the cubic (3.7) is equal to

(1+8a?)(t] — £5)(t3 — 5)(t5 — 11).

Comparing this formula with (3.16), we find that it vanishes on the union of 9
harmonic polars of the curve. The square of the Hermite covariant is a polyno-
mial in U, H, G.

The Cayleyan of a plane cubic defines a contravafasftdegree 3 and class
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3. Its symbolic expression igibc)(abu)(acu)(beu). Its value on the curve in
the Hesse form is given in (3.27). There is also a contravaaaf degree

5 and class 3. In analogy with the form of the word Hessian, A. Cayley gave
them the names theippianand theQuippian[81]. If C' = V (f) is given in

the Hesse form (3.7), then

Q(f) = V((1 —10a®) (ud + u? +uj) — 60%(5 + 4a>)uguiusg).
The full formula can be found in Cayley’s paper [80]. He also gives the formula
H(6aP + bQ) = (8Sa* + 3Ta?b — 245%ab® — TS?*)Q.

According to A. ClebschQ( f) vanishes on the locus of lines whose poloconics
with respect to the Cayleyan 6f are apolar to their poloconics with respect to
C'. Also, according to W. Milne and D. TayloPJ( f) is the locus of lines which
intersectC' at three points which, considered as lines in the dual plane, define
a reducible cubic apolar to the Hessian(d{see [429]). This is similar to the
property of the Pippian which vanishes on the set of lines which inte¢satt
three point which define a reducible cubic in the dual plane apolar to the curve
itself. The algebra of contravariants is generated-bly, Q and theHermite
contravariant[316]. Its value on the cubic in the Hesse form is equal to

(1+80”) (uf —u3)(u3 — ug) (ug — ui).

It vanishes on the union of 9 lines corresponding to the inflection points of the
curve. The square of the Hermite contravariant is a polynomigl ih Q.

Exercises

3.1Find the Hessian form of a nonsingular cubic given by the Weierstrass equation.

3.2Let H = He(C) be the Hessian cubic of a nonsingular plane cubic cahwehich
is not an equianharmonic cubic. Let H — H be the Steinerian automorphism&f
which assigns ta € H the unique singular point df, (C').

(i) Let H = {(a,0) € H x (P?)" : £ C P,(C)}. Show that the projectiop; :
H — H is an unramified double cover.
(i) Show thatH = H/(r).

3.3Let C = V(f) c P? be a nonsingular cubic.

(i) Show that the set of second polars@fwith respect to points on a fixed lirds
dual conic of the poloconic af' with respect td.

(i) Show thatK (¢) is equal to the set of poles dfwith respect to polar conics
P.(C), wherez € £.

(i) What happens to the coni& (¢) when the line is tangent ta”'?

(iv) Show that the set of linessuch thati (¢) is tangent td is the dual curve of'.
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(v) Letl = V(aoto + a1t1 + ast2). Show thatk (£) can be given by the equation

0 aop al a2
a 2%f o2 f o2 f
0 ot3 dtgdty Doty
g(a,t) = det %f %f o%s [ =0.
a1 B0t e Dt10to
an 22 oir o2y
2 Bta0t, 0t20t1 o2

(vi) Show that the dual curv€’¥ of C can be given by the equation (tiSzhkfli
equation)
0 2 §O 2 51 2 52
| SENO O e
t 2 ¢ 2 2
“la GO TEEte© HER0

a%g(e, a%g(¢, a%g(g,
52 ati(gt(t]) (5) atg;agtf) (5) gi% ) (5)

3.4LetC C P*! be an elliptic curve embedded by the linear systéda: (dpo)|,
wherepyg is a point inC. Assumed = p is prime.

(i) Show that the image of amytorsion point is an osculating point 6f, i.e., a point
such that there exists a hyperplane ganulating hyperplane) which intersects the
curve only at this point.

(i) Show that there is a bijective correspondence between the sets of coB1ehh>
with respect to subgroups of ordgand hyperplanes i?~! which cut out inC
the set ofp osculating points.

(i) Show that the set gf-torsion points and the set of osculating hyperplanes define
a(p211,p(p+1),)-configuration ofp* points andb(p + 1) hyperplanes (i.e. each
point is contained ipp + 1 hyperplanes and each hyperplane contaipsints).

(iv) Find a projective representation of the gro{#/pZ)* in PP~ such that each
osculating hyperplane is invariant with respect to some cyclic subgroup of prder
of (Z/pZ)*.

3.5A point on a nonsingular cubic is calledextactic poinif there exists an irreducible
conic intersecting the cubic at this point with multiplicity 6. Show that there are 27
sextactic points.

3.6 The pencil of lines through a point on a nonsingular cubic cdrveontains four
tangent lines. Show that the twelve contact points of three pencils with collinear base
points onC lie on 16 lines forming a configuratiofi2., 163) (the Hesse-Salmon con-
figuration).

3.7Show that the cross ratio of the four tangent lines of a nonsingular plane cubic curve
which pass through a point on the curve does not depend on the point.

3.8Prove that the second polar of a nonsingular cdbiwith respect to the point on

the Hessian He({is equal to the tangent lirfg, (He(C)).

3.9Leta, b be two points on the Hessian curve He(f6rming an orbit with the respect

to the Steinerian involution. Show that the ling is tangent to Cay(¢’at some point

d. Let c be the third intersection point of He(j(With the linead. Show that the pairs
(a,b) and(c, d) are harmonically conjugate.

3.10 Show that from each point on the He(( one can pass three tangent lines to
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Cay(C). Let b be the singular point oF, (C). Show that the set of the three tangent
lines consists of the lineb and the components of the reducible polar cdRj¢C).

3.11LetC = V(3 ;< jcr<a Gisktitite). Show that the Cayleyan curve Cay)€an
be given by the equation

aooo  @oor  a@oo2z2 & O O

aiio aiii aii2 0 €1 0

a2e0 G221 a2 0 0 & |
det 2a120 2a121 2a122 0 & & =0

2a200 2a201 2a202 & 0 &

2a010 2a011 2a012 &1 & O

[125], p. 245.

3.12 Show that any general net of conics is equal to the net of polars of some cu-
bic curve. Show that the curve parameterizing the irreducible components of singular
members of the net coincides with the Cayleyan curve of the cubic (it is called the
Hermite curveof the net.

3.13 Show that the group of projective transformations leaving a nonsingular plane
cubic invariant is a finite group of order 18, 36 or 54. Determine these groups.

3.14Find all ternary cubic€ such that VSP((4)° = 0.

3.15Show that a plane cubic curve belongs to the closure of the Fermat locus if and
only if it admits a first polar equal to a double line or the whole space.

3.16Show that any plane cubic curve can be projectively generated by a pencil of lines
and a pencil of conics.

3.17Given a nonsingular coni&” and a nonsingular cubi€, show that the set of points
z such thatP, (C) is inscribed in a self-polar triangle d@f is a conic.

3.18A complete quadrilateral is inscribed in a nonsingular plane cubic. Show that the
tangent lines at the two opposite vertices intersect at a point on the curve. Also, show
that the three points obtained in this way from the three pairs of opposite vertices are
collinear.

3.19Let o be a point in the plane outside of a nonsingular plane cabhi€onsider

the six tangents t¢' from the pointo. Show that there exists a conic passing through

the six points orC' which lie on the tangents but not equal to the tangency points. It is
called thesatellite conicof C' [156]. Show that this conic is tangent to the polar conic

P, (C) at the points where it intersects the polar life (C').

3.20Show that two general plane cubic curgsandC; admit a common polar pen-
tagon if and only if the panes of apolar conjéd- (C1)| and|AP2(C?>)| intersect.

3.21Let C be a nonsingular cubic anl be its apolar cubic in the dual plane. Prove
that, for any point orC, there exists a conic passing through this point such that the
remaining 5 intersection points with form a polar pentagon ok [545].

3.22Letp, g be two distinct points on a nonsingular plane cubic curve. Starting from an
arbitrary pointp; find the third intersection poinf; of the linepp; with C, then define

p2 as the third intersection point of the liggr with C', and continue in this way to
define a sequence of points, g1, p2, g2, - - - , ¢k, pr+1 ON C. Show thaipr1 = p if

and only ifp — ¢ is ak-torsion point in the group law o€’ defined by a choice of some
inflection point as the zero point. The obtained polygpn, g1, . .., gk, p1) is called

the Steiner polygorinscribed inC'.

3.23Show that the polar coni€, (C') of a pointz on a nonsingular plane cubic curve
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C cut out onC the divisor2z + a + b+ ¢ + d such that the intersection points N cd,
ac N bd andad Nbe lieonC.

3.24Show that any intersection point of a nonsingular cubliand its Hessian curve is
a sextactic point on the latter.

3.25Fix three pairs(p;, ¢;) of points in the plane in general position. Show that the
closure of the locus of points such that the 3 pairs of lineé%;, zq; are members of a
g3 in the pencil of lines through is a plane cubic.

3.26Fix three point1, p2, p3 in the plane and three linés, ¢-, ¢5 in general po-
sition. Show that the set of poinissuch that the intersection pointsof; with ¢; are
collinear is a plane cubic curve [289].

Historical Notes

The theory of plane cubic curves originates from the works of I. Newton [454]
and his student C. MacLaurin [415]. Newton was the first who classified real
cubic curves and he also introduced the Weierstrass equation. Much later K.
Weierstrass showed that the equation can be parameterized by elliptic func-
tions, the Weierstrass functiopgz) andp(z)’. The parameterization of a cu-

bic curve by elliptic functions was widely used for defining a group law on
the cubic. We refer to [541] for the history of the group law on a cubic curve.
Many geometric results on cubic curves follow simply from the group law and
were first discovered without using it. For example, the fact that the line join-
ing two inflection points contains the third inflection point was discovered by
MacLaurin much earlier before the group law was discovered. The book of
Clebsch and Lindemann [125] contains many applications of the group law to
the geometry of cubic curves.

The Hesse pencil was introduced and studied by O. H&4s§,[318]. The
pencil was also known as ttsyzygetic pencifsee [125]). It was widely used
as a canonical form for a nonsingular cubic curve. More facts about the Hesse
pencils and its connection to other constructions in modern algebraic geometry
can be found in [14].

The Cayleyan curve first appeared in Cayley’s paper [75]. Thea8obtua-
tion of the dual curve from Exercises was given by L. @éhin [542]. Its
modern proof can be found i264].

The polar polygons of a plane cubics were first studied by F. London [406]
Thus London proves that the set of polar 4-gons of a general cubic curve are
base points of apolar pencils of conics in the dual plane. A modern treatment
of some of these results is given in [194] (see also [503] for related results). A
beautiful paper of G. Halphen [303] discusses the geometry of torsion points
on plane cubic curves.
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Poloconics of a cubic curve are studied extensively indgais book [211].

The term belongs to L. Cremona [156] (conic polar in Salmon’s terminology).
O. Schlessinger proved in [545] that any polar pentagon of a nonsingular cubic
curve can be inscribed in an apolar cubic curve.

The projective generation of a cubic curve by a pencil and a pencil of conics
was first given by M. Chasles. Other geometric ways to generate a plane cubic
are discussed in Dage’s book [211]. Steiner polygons inscribed in a plane
cubic were introduced by J. Steiner in [589]. His claim that their existence is
an example of a porism was given without proof. The proof was later supplied
by A. Clebsch [118].

The invariant$ andT of a cubic ternary form were firstintroduced by Aron-
hold [11]. G. Salmon gave the explicit formulas for them in [538]. The basic
covariants and contravariants of plane cubics were given by A. Ca803yHle
also introduced 34 basic concomitants [96]. They were later studied in detalil
by A. Clebsch and P. Gordan [122]. The fact that they generate the algebra of
concomitants was first proved by P. Gordan [280] and S. Gundelfinger [300].
A simple proof for the completeness of the set of basic covariants was given
by L. Dickson [183]. One can find an exposition on the theory of invariants of
ternary cubics in classical books on the invariant theory [286], [233].

Cremona’s paper [156] is a fundamental source of the rich geometry of plane
curves, and in particular, cubic curves. Other good sources for the classical
geometry of cubic curves are books by Clebsch and Lindemann [125], t. 2, by
H. Durege [211], by G. Salmon [538], by H. White [655] and by H. Schroter
[549].



4
Determinantal equations

4.1 Plane curves

4.1.1 The problem

Let us consider the following problem. L¢{t, ..., ¢,) be a homogeneous
polynomial of degred, find ad x d matrix A = (I;;(t)) with linear forms as
its entries such that

f(tos ... tn) = det(l;;(2)). (4.2)

We say that two determinantal representations defined by matrice4’ are
equivalenif there exists two invertible matrices X,Y with constant entries such
that A’ = X AY. One may ask to describe the set of equivalence classes of
determinantal representatuions.

First, let us reinterpret this problem geometrically and coordinate-free. Let
E be a vector space of dimensien+ 1 and letU, V' be vector spaces of
dimensiond. A square matrix of sizé x d corresponds to a linear map’ —

V, or an element ot/ ® V. A matrix with linear forms corresponds to an
elementofEY @ U @ V,oralinearmap’ : E - U ® V.

We shall assume that the majp is injective (otherwise the hypersurface
V(f) is a cone, so we can solve our problem by induction on the number of
variables). Let

¢:|E|—|UV]| (4.2)

be the regular map of the associated projective spacesDket |U ® V|

be thedeterminantal hypersurfaggarameterizing non-invertible linear maps
UV — V. If we choose bases ifi, V, thenD, is given by the determinant of
a square matrix (whose entries will be coordinate¥ i V). The preimage
of D4 in |E| is a hypersurface of degree Our problem is to construct such a
map¢ in order that a given hypersurface is obtained in this way.
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Note that the singular locu®3™ of D, corresponds to matrices of corank

> 2. Itis easy to see that its codimension|ii ® V| is equal to4. If the
image of|E| intersectsD3", theng~1(D,) will be a singular hypersurface.
So, a nonsingular hypersurfad& f) of dimension> 3 cannot be given by

a determinantal equation. However, tit still could be true for the hypersurface

V(f*).

4.1.2 Plane curves

Let us first consider the case of nonsingular plane cuves V(f) c P2.
Assume thaC' has a determinantal equation. As we have explained earlier, the
image of the map does not interse@®3". Thus, for any: € C, the corank of

the matrix¢(z) is equal to 1 (here we consider a matrix up to proportionality
since we are in the projective space). The null-space of this matrix is a one-
dimensional subspace bt', i.e., a point inP(U). This defines a regular map

(:C = PU), z— |Ker(o(x)).

Now lett¢(x) : VV — U be the transpose map. In coordinates, it corresponds
to the transpose matrix. Its null-space is isomorphic to Im(¢tagind is also
one-dimensional. So we have another regular map

t:C—=PV), zw— [Ker(*o(x))|.
Let
L =U0pay(l), M=rt"Opu(1).
These are invertible sheaves on the cutv&Ve can identify/ with H°(C, £)

andV with H°(C, M) (see Lemmat.1.2below). Consider the composition
of regular maps

v 0 S PU) x P(V) 22 P(U @ V), 4.3)

wheressy is the Segre map. It follows from the definition of the Segre map,
that the tensot)(x) is equal tol(x) ® v(x). It can be viewed as a linear map
U — VV. In coordinates, the matrix of this map is the product of the column
vector defined by(x) and the row vector defined bigx). It is a rank 1 matrix
equal to the adjugate matrix of the matix= ¢(x) (up to proportionality).
Consider the rational map

Adj: |UQV|- —=PURV) (4.4)

defined by taking the adjugate matrix. Recall that the adjugate matrix should
be considered as a linear may’ ' UY — A?"'V and we can identify
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U @ VY| with |A“'U @ A" ! V|. Although Adj is not well-defined on
vector spaces, it is well-defined, as a rational map, on the projective spaces
(see Exampléd.1.2). Let¥ = Adjo ¢, theny is equal to the restriction o to

C. Since Adj is defined by polynomials of degrée 1 (after we choose bases
inU, V), we have

VOpwevy(1) = O|(d—1).
This gives
Y Opwev)(l) = O |(d —1) ® Oc = Oc(d — 1).
On the other hand, we get
U Opwev)(1) = (s20 (1,1)" Opwev)(1)
= (Lv)*(530pwev)(1) = (1L,1)" (P1Orw) (1) ® P5Opy (1))

=1"Op)(1) @ " Opyy(1) = LO M.

Herep, : P(U) xP(V) — |U|, p2 : P(U) x P(V) — P(V) are the projection
maps. Comparing the two isomorphisms, we obtain

Lemma4.1.1
LRIMZOc(d—1). (4.5)

Remark4.1.1 It follows from Examplel.1.2that the rational map (4.4) is
given by the polars of the determinantal hypersurface. In faet,# (¢;;) is a
matrix with independent variables as entries, tF f(,_A) = M,;, wherelM;

is theij-th cofactor of the matrixA. The map Adj is a birational map since
Adj(A) = A= det(A) and the mapd — A~! is obviously invertible. So, the
determinantal equation is an example of a homogeneous polynomial such that
the corresponding polar map is a birational map. Such a polynomial is called a
homaloidal polynomia(see [197]).

Lemma4.1.2 Letg = 5(d — 1)(d — 2) be the genus of the curé@ Then

1
2
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Proof Let us first prove (iii). A nonzero section &f°(C, £(—1)) is a section
of £ which defines a hyperplane B(U) which intersect$(C) along a divisor
(D), whereD is a divisor onC cut out by a line. Since all such divisof$
are linear equivalent, we see that for any lithe divisorl{(¢ N C') is cut out
by a hyperplane if?(U). Choose such that it intersect§' atd distinct points
Z1,...,24. Choose bases i andV. The image ob(¢) in [U®V| = P(Maty)
is a pencil of matrices\A + uB. We know that there aré distinct values
of (A, 1) such that the corresponding matrix is of corank 1. Without loss of
generality, we may assume thatand B are invertible matrices. So we hase
distinct)\; such that the matrixd + \; B is singular. Let.’ span Ker( A+ \; B).
The corresponding points iR(U) are equal to the point$¢;). We claim that
the vectorsu!, ..., u? are linearly independent vectors/). The proof is
by induction ond. Assumea;u! + - - - 4+ aqu® = 0. ThenAu® + \; Bu’ = 0
foreachi = 1,...,d, gives

d d
= A(Z aiui) = ZaiAui = — Zai)\iBui.
i=1 i i=1
We also have
d d
= B(Z aiui) = Z a; Bu'.
i=1 i=1

Multiplying the second equality by, and adding it to the first one, we obtain

d—1
Zai()‘d_ )Bu' = Zal Ad— A =
i=1

SinceB is invertible, this gives

d—1
Z az(/\l - )\d)uz =0.
i=1

By induction, the vectors!, ..., u?"! are linearly independent. Since #
A\g, We obtaina; = ... = ag_; = 0. Sinceu? # 0, we also getiy = 0.
Sinceu!, ..., u? are linearly independent, the poirts;) spanP(U). Hence

no hyperplane contains these points. This proves HtC, £(—1)) = 0.
Similarly, we prove that{%(C, M(—1)) = 0. Applying Lemma4.1.1, we get

L(-1) @ M(-1) 2 Oc(d - 3) = wc, (4.6)
wherew¢ is the canonical sheaf aii. By duality,

H (C,M(=1)) =2 H'™(C,L(-1)), i=0,1.
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This proves (iii). Let us prove (i) and (ii). Lét be a section 0 (1) with
subscheme of zeros equal #b. The multiplication byh defines an exact se-
qguence

0—-L(-1)=>L—->LROy — 0.

After passing to cohomology and applying (iii), we obtdift (C,£) = 0.
ReplacingC with M and repeating the argument, we obtain tHa{C, M) =
0. This checks (iv).
We know thatdim H°(C, £) > dim U = d. Applying Riemann-Roch, we
obtain
deg(£) = dim H*(C,L) +g—1>d+g— 1.

Similarly, we get

deg(M) >d+g—1.
Adding up, and applying Lemmé&1.1, we obtain
d(d—1) =degOc(d—1) = deg(L) + deg(M) > 2d+2g — 2 =d(d—1).

Thus all the inequalities above are the equalities, and we get assertions (i) and
(ii).
O

Now we would like to prove the converse. L&and M be invertible sheaves
on C satisfying (4.5) and properties from the previous Lemma hold. It follows
from property (iv) and the Riemann-Roch Theorem that

dimU =dimV =d.

Letl: C — P(U),r: C — P(V) be the maps given by the complete linear
systemg.L| and|M|. We definey : C — P(U ® V) to be the composition of
(I,+) and the Segre magp. It follows from property (4.5) that the mapis the
restriction of the map

U:|E|—-PU®V)

given by a linear system of plane curves of degiee 1. We can view this
map as a tensor if?"1(EV) ® UY ® VV. In coordinates, it is & x d matrix
A(t) with entries from the space of homogeneous polynomials of degree
Since¥|c = ¢, for any pointz € C, we have rankd(z) = 1. Let M be a
2 x 2 submatrix ofA(t). Sincedet M (z) = 0 for x € C, we havef | det M.
Consider & x 3 submatrix\ of A(t). We havelet adj(N) = det(N)?. Since
the entries of adj(/y are determinants ¢f x 2 submatrices, we see thft |
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det(N)2. SinceC is irreducible, this immediately implies thgt | det(NV).
Continuing in this way, we obtain thgt'—2 divides all cofactors of the matrix
A. ThusB = f?~“adj(A) is a matrix with entries in£V. It defines a linear
mapFE — U ® V and corresponding regular map of projective spaces

¢:|E| = |UV]|

whose composition with the map AdjU® V| — P(U®V) coincides with¥.
Since rankB = rank adj(A), and rankl(z) = 1, we get that ranlB(z) = d—
1foranyx € C. So, ifdet B is not identically zero, we obtain th&t(det(B))
is a hypersurface of degrekvanishing onC, hencedet(B) = \f for some
A € C*. This shows thaC' = V(det(B)). To see thatlet(B) # 0, we have
to use property (iii) of Lemmd.1.2. Reversing the proof of this property, we
see that for a general lineéin |E| the images of the points; € ¢ N C in
P(U) x P(V) are the pointgu’, v*) such that thei*’'s spanP(U) and thev®’s
spanP(V'). The images of the;;'s in P(U ® V) under the mapl span a
subspacd. of dimensiond — 1. If we choose coordinates so that the points
andv® are defined by the unit vecto(s, . .., 1,...,0), thenL corresponds to
the space of diagonal matrices. The image of thedinader¥ is a Veronese
curve of degreel — 1 in L. A general point¥(x),z € ¢, on this curve does
not belong to any hyperplane inspanned byl — 1 pointsz;’s, thus it can be
written as a linear combination of the poinkgt;) with nonzero coefficients.
This represents a matrix of ramk This shows thatlet A(x) # 0 and hence
det(B(z)) # 0.

To sum up, we have proved the following theorem.

Theorem 4.1.3 LetC c P? be a nonsingular plane curve of degréeLet
Pic(C)?~! be the Picard variety of isomorphism classes of invertible sheaves
on C of degreeg — 1. Let® c Pic/~*(C) be the subset parameterizing in-
vertible sheavest with H°(C, F) # {0}. LetL, € Pic?"!(C) \ ©, and
Mo = we @ Lyt ThenU = H(C, Ly(1)) andV = H°(C, My (1)) have
dimension/ and there is a unique regular map: P? — |U®V| such thaC'is
equal to the preimage of the determinantal hypersurfageThe composition
of the restriction ofp to C' and the magAdj : [U® V| — P(U®V) is equal to
the composition of the mgp, t) : C — P(U) x P(V') and the Segre map. The
mapsl : C — P(U) andt : C — P(V) are given by the complete linear sys-
tems|Ly(1)| and| M (1)| and coincide with the maps — |Ker(¢(z))| and

x — |Ker(*¢(x))|, respectively. Conversely, given a map P? — |U @ V|
such thatC = ¢~'(Dy), there exists a uniqu&, € Pic’~'(C) such that
U= HC,Ly(1)),V = H(C,we(1) ® L;') and the mapp is defined by
L as above.
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Remark4.1.2 LetX be the set ofl x d matricesA with entries inEY such
that f = det A. The groupG = GL(d) x GL(d) acts on the set by

(0‘1,0’2)'AZO'1 -A-U;l.
It follows from the Theorem that the orbit spa&e G is equal to Pi¢~'(C) \
O.
We mapLy — My = we ® Ly is an involution on P&~ \ ©. It corre-
sponds to the involution oX defined by taking the transpose of the matrix.

4.1.3 The symmetric case

Let us assume that the determinant representation of a plane irreducible curve
C of degreed is given by a pair of equal invertible sheavés= M. It follows
from Lemmast.1.1and4.1.2that

° £®2 = Oc(d — 1);
o deg(L) = £d(d — 1);
e HY(C,L(-1)) = {0}.

Recall that the canonical sheaf is isomorphic taO¢«(d — 3). Thus
L(-1)®2 = we. 4.7

Definition 4.1.1 Let X be a curve with a canonical invertible sheat (e.g.

a nonsingular curve, or a curve on a nonsingular surface). An invertible sheaf
0 whose tensor square is isomorphicdg is called atheta characteristic. A
theta characteristic is calledven(resp.odd) ifdim H°(X,N) is even (resp.
odd).

Using this definition, we can express (4.7) by saying that
£=0(1),

wheref is an even theta characteristic (becatiE&C, 0) = {0}). Of course,

the latter condition is stronger. An even theta characteristic with no nonzero
global sections (resp. with nonzero global sections) is calledraeffective
theta characteristic(resgffective theta characteristic).

Rewriting the previous subsection under the assumptionghat M, we
obtain thatU = V. The mapd = ¢ are given by the linear systems| and
define a magl, 1) : C — P(U) x P(U). Its composition with the Segre map
P(U) x P(U) — P(U ® U) and the projection t&(5?(U")) defines a map

¥ C —P(S*(UY)) = |S*U|.
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In coordinates, the map is given by

V(@) =(z) (),

wherel(z) is the column of projective coordinates of the pdint). Itis clear
that the image of the map is contained in the variety of rank 1 quadrics in
|UV|. It follows from the proof of Theorem.1.3that there exists a linear map
¢ : P2 — |S%(UY)] such that its composition with the rational map defined
by taking the adjugate matrix is equal, after restrictionCtoto the mapy.
The image ofy is a netNV of quadrics in|U|. The imagep(C) is the locus of
singular quadrics inV. For each pointz € C, we denote the corresponding
quadric byQ... The regular mapis defined by assigning to a poiate C the
singular point of the quadriQ,.. The imageX of C'in |U] is a curve of degree
equal todeg £ = 3d(d — 1).

Proposition 4.1.4 The restriction map
r i H(UJ, Op(2)) — H(X, 0x(2)
is bijective. Under the isomorphism
HY(X,0x(2)) = H(C, £%?) = H(C, Oc¢(d — 1)),

the space of quadrics ifUU| is identified with the space of plane curves of
degreed — 1. The net of quadric#V is identified with the linear system of first
polars of the curve”.

Proof Reversing the proof of property (iii) from Lemm&al.2 shows that
the image ofC under the map) : C — P(U ® V) spans the space. In our
case, this implies that the image@funder the majg’ — |S?(U")| spans the
space of quadrics in the dual space. If the imag€ afl P(U) were contained

in a quadric@, then@ would be apolar to all quadrics in the dual space, a
contradiction. Thus the restriction mayis injective. Since the spaces have the
same dimension, it must be surjective.

The composition of the map: P? — |O)y(2)|, z — Q., and the isomor-
phism|O)((2)| =2 |Op2(d — 1)| is a maps : P? — [Op2(d — 1)|. A similar
maps’ is given by the first polars — P, (C). We have to show that the two
maps coincide. Recall th&,(C) N C = {c € C : x € T,(C)}. In the next
Lemma we will show that the quadri€g,,z € T.(C), form the line in NV
of quadrics passing through the singular pointfequal tor(c). This shows
that the quadri@.(,) cuts out inl(C) the divisort(P,(C) N C). Thus the
curvess(z) ands’(x) of degreed — 1 cut out the same divisor oft, hence
they coincide. O
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Lemma 4.1.5 LetW C S4UV) be a linear subspace, andV[s be the
locus of singular hypersurfaces. Assume |W|% is a nonsingular point of

|W 5. Then the corresponding hypersurface has a unique ordinary double point
y and the embedded tangent spaEg(|1V|®) is equal to the hyperplane of
hypersurfaces containing

Proof AssumeW = S?(VV). Then|W | coincides with the discriminant
hypersurfaceD,(|U]) of singular degreel hypersurfaces ifU|. If [W] is a
proper subspace, théi|* = |W|NDy(|U|). Sincex € [W|3is a nonsingular
point and the intersection is transversal(|W %) = T, (D4(|U|) N |W|. This
proves the assertion.

O

We see that a paifC, ), whereC' is a plane irreducible curve ardlis
a non-effective even theta characteristic@rdefines a neN of quadrics in
|H®(C,6(1))V| such thatC = NS. Conversely, letN be a net of quadrics in
P4=1 = |V|. It is known that the singular locus of the discriminant hypersur-
face Dy (d — 1) of quadrics inP?~! is of codimension 2. Thus a general net
N intersectd,(d — 1) transversally along a nonsingular cu/eof degreed.
This gives a representation 6fas a symmetric determinant and hence defines
an invertible sheaf and a non-effective even theta characteriétithis gives
a dominant rational map of varieties of dimensiah + 3d — 16)/2

G(3,5%(UY))/PGL(U)— — |Op2(d)|/PGL(3). (4.8)

The degree of this map is equal to the number of non-effective even theta char-
acteristics on a general curve of degreeWe will see in the next chapter
that the number of even theta characteristics is equ2l td(29 + 1), where

g = (d —1)(d — 2)/2 is the genus of the curve. A cur& of odd degree

d = 2k+3 has a unique vanishing even theta characteristic eqdaHt® - (k)

with h°(0) = (k +1)(k + 2)/2. A general curve of even degree does not have
vanishing even theta characteristics.

4.1.4 Contact curves
Let
(Lr):C—->PU)xP(V)CcP(U®YV)

be the embedding @¥ given by the determinant representation. By restriction,
it defines a linear map

ro L) x| M| =|U|x|V]| = |[LIM]| 2 |Oc(d—1)|, (D1, D2) — (D1, D3),
(4.9)
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where (D, D5) is the unique curve of degrek— 1 that cuts out the divisor
D, + Dy onC. Consider the variety

F={(x,D1,Ds) € P> x |U| x |V| : x € (D1, D5)}.

It is a hypersurface if?? x |U| x |V| of type (d — 1,1,1). Choose a basis
(ug,...,uq—1) in U and a basigvy, . ..,vq—1) in V. They will serve as pro-
jective coordinates ii?(U) andP(V'). Let A = (I;;) define the determinantal
representation of’.

Proposition 4.1.6 The incidence variety’ is given by the equation

111 N lld Ug
121 N lgd (5%
det =0. (4.10)
lar -oo lagg wa—1
Ug co.o Ug-—1 0

Proof Thebordered determinai4.10) os equal te- ) A;;u,v;, whereA,;

is the(ij)-entry of the adjugate matrix adj(A). For amye C, the rank of the
adjugate matrix adj( A(x)ls equal to 1. Thus the above equation defines a bi-
linear form of rank 1 in the spadé” @ V'V of bilinear forms ori/ x V. We can
write it in the form (3} a;v;) (3" bju;), wherel(z) = [ao, ..., aq4-1],t(z) =

[bo, - - ., ba—1]. The hyperplan® (>~ a;v;) (resp.V (> byu;)) in [U] (resp.|V)
defines a divisoD; € |L] (resp.|M]) such thate € (D1, D5). This checks
the assertion. O

Next we use the following determinant identity which is due to O. Hesse
[321].

Lemma4.1.7 LetA = (a;;) be a square matrix of size Let

ail ai12 e Q1 U

a1 a922 ... A2k U2
D(A;u,v) :=

ar1 Ag2 e Qpr Up

v v ... v O

Then
D(A;u,u)D(A;v,v) — D(A;u,v)D(A,v,u) = Pdet(A), (4.12)

whereP = P(aj1,...,Gkk; U1, ..., Uk; V1, - ., Ug) IS & polynomial of degree
k in variablesa;; and of degree 2 in variables; andv;.
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Proof ConsiderD(A;wu,v) as a bilinear function im, v satisfyingD (A4; u, v)
= D(*A4;v,u). We haveD(4;u,v) = — ) A;;u;v;, whereA,;; is the (ij)-
entry of adj(A). This gives

D(A;u,u)D(A;v,v) — D(A;u,v)D(A;v,u)
= (Z Aijuiuj')(z Aijvivj) — (Z Aijuivj)(z Ajiuivj)

= Z uaubvcvd(AabAdc - AacAdb)-

Observe thatd,, Ag. — AacAay is equal to & x 2-minor of adj(A). Thus,

if det A = 0, all these minors are equal to zero, and the left-hand side in
(4.11) is equal to zero. This shows th&it A, considered as a polynomial

in variablesa;;, divides the left-hand side of (4.11). Comparing the degrees
of the expression in the variables;, u;, v;, we get the assertion about the
polynomial P. O

Let us see a geometric meaning of the previous Lemma. The durve
V(D(A;u,u)) intersects the curvé = V(det A) atd(d — 1) points which
can be written as a sum of two divisals, € |£| and D), € |M| cut out by
the curveV (D(A; u,v)) andV (D(A4;v,u)), where[v] € P(V). Similarly, the
curveT, = V(D(A;v,v)) intersects the curvé’ = V(det A) atd(d — 1)
points which can be written as a sum of two divisérs € |£| and D!, € | M|
cut out by the curvd (D(A; u,v)) andV (D(A;v,w)), where[u] € P(U).

Now let us specialize assuming that we are in the case when the Ma#ix
symmetric. Ther/ = V, and (4.11) becomes

D(A;u,v)? — D(A;u,u)D(A;v,v) = Pdet A. (4.12)

This time the curvd’,, = V(D(A;u,u)) cuts out inC' the divisor2D,,, where

D, € |L], i.e. it touchesC at d(d — 1)/2 points. The curve/ (D(A;u,v)
cuts out inC' the divisorD,, + D,,, where2D,, is cut out by the curvgd’,, =
V(D(A;v,v)). We obtain that a choice of a symmetric determinantal rep-
resentationC’ = V(det A) defines an algebraic system ofntact curves
Tu, [u] € P(U). By definition, a contact curve of an irreducible plane curve
C'is a curvel such that

Oc(T) = L£5?

for some invertible sheaf on C with R°(£) > 0. Up to a projective trans-
formation of U, the number of such families of contact curves is equal to the
number of non-effective even theta characteristics on the atirve

Note that any contact curv& of C' belongs to one of the these— 1-
dimensional algebraic systems. In fact, it cuts out a divid3@much thatD €
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|Oc(d — 1)|. Thend = Oc(D)(—1) is a theta characteristic. i°(C, 0) # 0,
then D must contain a divisor of degre&cut out by a line/. Since a line
intersects” atd — 1 points, we get a contradiction. This shows tha a non-
vanishing theta characteristic. Next, we find a symmetric determinantal repre-
sentation ofC' corresponding t@ and a curveé/ (D(A;u, u)) which cuts out

the same divisoD in C'. Since the degrees of the cunEsindV (D (A4; u, u))

are less than the degree@f they must coincide.

The algebraic systems of contact curtésD(A; u,u)) are not linear sys-
tems of curves, they depend quadratically on the parameteesP(U). This
implies that a general point in the plane is contained in a subfamily of the sys-
tem isomorphic to a quadric iB(U), not a hyperplane as it would be in the
case of linear systems. The universal family of an algebraic system of contact
curves is a hypersurfacg in |E| x P(U) of type (d — 1, 2). Itis given by the
equation

> Aijlto, tr, t2)usuy =0,

where(A4;;) is the adjugate matrix ofl. Its projection toP(E) is a quadric
bundlewith discriminant curve given by equatietet adj(A) = |A|¢~t. The
reduced curve is equal 1©. The projection of7 to P(U) is a fibration in
curves of degreé — 1.

One can also see the contact curves as follows.[{let [&,. .., q—-1]
be a point inUY| andH: = V(3" &;t;) be the corresponding hyperplane in
|U|. The restriction of the net of quadrics defineddyo H, defines a net of
quadricsN (&) in H, parameterized by the plade The discriminant curve of
this net of quadrics is a contact curve®fIn fact, a quadrie, | He in N(§) is
singular if and only if the hyperplane is tangent3g. Or, by duality, the point
[¢] belongs to the dual quadri@; = V(D (A(z);&,£)). This is the equation
of the contact curve corresponding to the paramgter

Consider the bordered determinant identity (4.12). It is clearfhiatsym-
metric inu, v and vanishes fot = v. This implies thatP can be expressed
as a polynomial of degree 2 iniRlker coordinates of lines iB?~! = |9(1)|.
ThusP = 0 represents a family ajuadratic line complexesf lines inP?—!
parameterized by points in the plane.

Proposition 4.1.8 Let¢ : |E| — |S?(U)V| be the net of quadrics ifU|
defined by the theta characteristic For anyz € |E| the quadratic line com-
plex V(U (u,v;z)) consists of lines inUY| such that the dual subspace of
codimension 2 inU| is tangent to the quadriQ, = ¢(x).

Proof Note thatthe dual assertion is that the line is tangent to the dual quadric
QY. The equation of the dual quadric is given B\ A(z); u,u) = 0. A line
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spanned by the poifg] = [£o, . .., &q4—1] and[n] = [no, - . .,na—1] is tangent

to this quadric if and only if the restriction of this quadric to the line is given
by a singular binary form in coordinates on the line. The discriminant of this
quadratic form isD(A(x); &, €)D(A(z);n,n) — D(A(x); €,1)%. We assume
that the pointz is a general point in the plane, in particular, it does not belong
to C. Thus this expression vanishes if and onlyif¢, n) = 0. O

4.1.5 First examples

Taked = 2. Then there is only one isomorphism classfofvith deg £ = 1.
Sincedeg £(—1) = —1, h°(C,L(-1)) = 0,s0L = M, andC admits a
unigue equivalence class of determinantal representations which can be chosen
to be symmetric. For example,@ = V (¢yt; — t3), we can choose

A (to t2> ’
ta 11

We haveP(U) = P!, andt = [ mapsC isomorphically toP!. There is only
one family of contact curves of degreéelt is the system of tangents €. It is
parameterized by the conic in the dual plane, the dual coni¢. dtus, there
is a natural identification of the dual plane wWR(S2U).

Taked = 3. Then Pi¢~(C) = Pid’(C) and® = Pid’(C) \ {O¢}. Thus
the equivalence classes of determinantal representations are parameterized by
the curve itself minus one point. There are three systems of contact conics.
Let T be a contact conic cutting out a divis®fp; + p2 + p3). If we fix a
group law onC defined by an inflection point, then the pointg; add up to a
nonzero 2-torsion poirt. We havep; + p2 + ps ~ 20 + €. This implies that
L = Oc(20 + €). The contact conic which cuts out the divistiRo + €) is
equal to the union of the inflection tangent linecand the tangent line at
(which passes througt). We know that each nonsingular curve can be written
as the Hessian curve in three essentially different ways. This gives the three
ways to writeC' as a symmetric determinant and also write explicitly the three
algebraic systems of contact conics.

Let (£, M) define a determinantal representatiorCofLet( : C — P(U)
be the reembedding af' in P(U) given by the linear systerf|. For any
Dy € |M|, there existsD € || such thatD, + D is cut out by a conic.
Thus we can identify the linear systei| with the linear system of conics
through Dy. This linear system defines a birational map P? --» P(U)
with indeterminacy points iDy. The mapl : C — P(U) coincides with the
restriction ofo to C.
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Consider the map
(I,v) : C — P(U) x P(V) = P? x P2

Proposition 4.1.9 The image ofl, t) is a complete intersection of three hy-
perplane sections in the Segre embedding of the product.

Proof Consider the restriction mag.Q)
UxV=H(PU)xPV),Op(1) B Opn(1)) = H(X,0x (1)),

where X is the image ofC in P(U ® V') under the composition of the map
(I,t) and the Segre map. Here we identify the spabié$C, L ® M) and
H°(X,0x(1)). Since the map (4.9) is surjective, and its target space is of
dimensiorg, the kernel is of dimension 3. So the ima§eof C'in P(U) xP(V)

is contained in the complete intersection of three hypersurfaces of type

By adjunction formula, the intersection is a cur¥€ of arithmetic genus 1.
Choose coordinatei, u1,u2) in UY and coordinategvg, v1,v2) in V to be
able to write the three hypersurfaces by equations

S aPuw; =0, k=123
0<4,5<2

The projection ofX to the first factor is equal to the locus of poifits, w1, us]
such that the system

2
ST aPuv; =30 alPuiyw; =0, k=123

has a nontrivial solutioffvg, v1, v2). The condition for this is
2 2 2
;)al%)ui Z‘;ag)ui %ag)ui
2 P 3
det | > al(»g)ui > ag)ui > ag)u,; =0. (4.13)
=0 =0 =0
2 2 2
>adu Y au ¥ e
=0 =0 =0
This checks that the projection &f to the factof(U) is a cubic curve, same
as the projection ok . Repeating the argument, replacing the first factor with

the second one, we obtain that the projectionsXéfand X to each factor
coincide. This implies thak = X". O

Recall that a determinantal representatiorCois defined by a linear map
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¢ : E — U ® V. Let us show that its image is the kernel of the restric-
tion map. We identify its target spadé® (X, Ox (1)) with H°(C, O¢(d —

1)) = H°(P2?,Op2(d — 1)). In coordinates, the magp is defined by[z]

> aij(z)u; ® v, whereC' = V(det(a;;)). The restriction map is defined by
the mapu; ® v; — A;;, whereA,; is a(ij)-cofactor of the adjugate matrix of
(ai;) and the bar means the restrictionfo The composition is given by

T — Z (ljiAij = det(aij) restricted taC.

Since the restriction of the determinantias zero, we see thdt can be iden-
tified with the linear system of hyperplane section®@f’) x P(V') defining
the curve(l, v)(C).

Note that the determinant (4.13) gives a determinantal representation of the
plane cubia” reembedded in the plane by the linear systé€inlt is given by
alinear mag/V — EV ® V obtained from the tensorc EY @ U @ V which
defines the linearmap: £ - U ® V.

4.1.6 The moduli space

Let us consider the moduli space of pa(rs, A), whereC' is a nonsingular
plane curve of degre€ and A is a matrix of linear forms such that =
V(det A). To make everything coordinate-free and match our previous no-
tations, we lef?? = |E| and considedd as alinearmap : £ - U®V =
Hom(UY, V). Our equivalence relation on such pairs is defined by the nat-
ural action of the group GL(/x GL(V) onU ® V. The composition of

with the determinant malf @V — Hom(A® UY, A% V) = C is an element of
S(EV). It corresponds to the determinant of the mattixJnder the action of
(g,h) € GL(U) x GL(V), it is multiplied bydet g det h, and hence represents

a projective invariant of the action. Consideas an elementaf¥ @ U @ V,

and let

det: EY @ U @ V/GL(U) x GL(V) — |S?E|

be the map of the set of orbits defined by taking the determinant. We consider
this map as a map of sets since there is a serious issue here whether the orbit
space exists as an algebraic variety. However, we are interested only in the
restriction of the determinant map on the open sups&t® U @ V)° defining
nonsingular determinantal curves. One can show that the quotient of this subset
is an algebraic variety.

We know that the fibre of the majet over a nonsingular cun is bijective
to Pid~1(C) \ ©. Let

T X — |SYEY)|
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be the universal family of nonsingular plane curves of degrénd genug).
It defines a family

7 Pich !t — [SYEY)

whose fibre over a curv€ is isomorphic to Pi¢ ! (C). Itis the relative Picard
scheme ofr. It comes with a divisof such that its intersection with~! (C)

is equal to the diviso®. It follows from the previous sections that there is an
isomorphism of algebraic varieties

(BY @ U ®V)°/GL(U) x GL(V) = Pici '\ T.

This shows that the relative Picard schefie " is a unirational variety. An
easy computation shows that its dimension is equdfte 1.

Itis a very difficult question to decide whether the vari@t);tz{,ﬁ_1 is rational.
It is obviously rational ifd = 2. It is known that it is rational forl = 3 and
d = 4 [245]. Let us sketch a beautiful proof of the rationality in the case 3
due to M. Van den Bergh [635].

Theorem 4.1.10 Assumel = 3. ThenPic} is a rational variety.

Proof A point of Pic” is a pair(C, £), whereC is a nonsingular plane cubic
and L is the isomorphism class of an invertible sheaf of degree 07L&k
a divisor of degree 0 such th&-(D) = L. Choose a lin¢ and letH =
{NC =py+p2+ps. Letp,+ D ~q;,1 =1,2,3, whereg; is a point. Since
pi — ¢; ~ p; — ¢;, we havep; +¢; ~ p; +¢;. This shows that the ling®;, ¢;)
and(p;, ¢;) intersect at the same poing; on C. Since,p; + ¢; + r;; ~ H, it
is immediately checked that

p1+p2+p3+q1+q2+q3+r12+ 123+ 7113 ~ 3H.

This easily implies that there is a cubic curve which intersétts the nine
points. Together withC' they generate a pencil of cubics with the nine points
as the set of its base points. LEt= (2 x (P?)3 /&3, whereS3 acts by

g ((Phpz,p:s),(qh%,q;s)): ((pa(1)7pa(2)>pcr(3))7(QU(1)7q0(2)7QU(3)))'

The variety X is easily seen to be rational. The projection/tg&; = P3
defines a birational isomorphism between the produdb®find (P?)3. For
eachz = (P,Q) € X, let¢(z) be the pencil of cubics through the points
P1, P2, D3, 91, G2, g3 and the points;; = (p;, ¢;), where(ij) = (12, (23), (13).
Consider the sdt’’ of pairs(z, C),C € ¢(x). The projection(u, C') — u has
fibres isomorphic t&®'. Thus the field of rational functions ok’ is isomor-
phic to the field of rational functions on a conic over the fi&gldX ). But this
conic has a rational point. It is defined by fixing a poinfthand choosing a
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member of the pencil passing through this point. Thus the conic is isomorphic
to P! and K (X') is a purely trancendental extension/sf X ). Now we de-

fine a birational map fronPic to X’. Each(C, £) defines a point of/’ by
ordering the set N C, then definingyy, g2, g3 as above. The member of the
corresponding pencil through's, ¢;'s andr;;’s is the curveC'. Conversely,

a point(z,C) € X’ defines a point{C, £) in Pic). We defineL to be the
invertible sheaf corresponding to the divigser+ g2 + ¢s. It is easy that these
map are inverse to each other. O

Remark4.1.3 If we choose a basis in each spatd/, V, then a mapp :
E — Hom(U,V) is determined by three matrices = ¢(e;). Our moduli
space becomes the space of triplds, A, A3) of d x d matrices up to the
action of the groupZ = GL(d) x GL(d) simultaneously by left and right
multiplication

(01,02) - (A1, Az, A3) = (0141051, 014205 014305 ).

Consider an open subset of mapsuch thatA; is an invertible matrix. Tak-

ing (01,02) = (1, AT'), we may assume that; = I is the identity matrix.
The stabilizer subgroup dff;, Az, As) is the subgroup ofoy, o3) such that
o109 = 1. Thus our orbit space is equal to the orbit space of pairs of matri-
ces(A, B) up to simultaneous conjugation. The rationality of this space is a
notoriously very difficult problem.

4.2 Determinantal equations for hypersurfaces

4.2.1 Determinantal varieties

Let Mat,, , = C™** be the space of complex x k matrices with natural
basise;; and coordinates;;. The coordinate ring[C™*"] is isomorphic to
the polynomial ringC[(¢;;)] in mk variables. For any vector spac&sV of
dimensionsk, m, respectively, a choice of a bagis;) in U and a basigv;)
in V identifiesU ® V' with Mat,, ,, by sendingu; ® v; to e;;. An element
o € U ® V can be viewed as a linear map’ — V, or as a bilinear form
onUY @ VV. Under the natural isomorphishi® V' — V ® U, the mapo
changes to the transpose niap

We denote by N (o) (resp.”N(c)) the left (resp. the right) kernel of
considered as a bilinear map. These are subspadés ahdV'V, respectively.
Equivalently,! N (o) = Ker(o) (resp."N (o) = Ker(to) = o(U)1) if o is
considered as a linear map. For any the rangd < r < min{m, k}, we set

UV),:={ceU®V :ranke <r}
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and denote byU ® V|, its image in the projective spad& ® V|. Under
the isomorphisnUV @ V. — V @ W, the variety(V ® U),,—,. The varieties
|U ® V|, are closed subvarieties of the projective spi¢ex V|, called the
determinant varieties. Under isomorphigfi @ V| = |[C™*k| = Pk
the variety|U ® V|, becomes isomorphic to the closed subvarietPof 1
defined by(r + 1) x (r + 1) minors of am x k matrix with entries;;.

Let G(r, V') be the Grassmann variety ofdimensional linear subspaces of
V and let

Ue V|, ={(6L)e|UaV|xGrV):¢U)C L}.

The projection taG(r, V) exhibits\U/éT/Ln as a projective vector bundle of

relative dimensiorkr and implies thaiU @ V|, is a smooth variety of di-
mensionmk — (m — k)(k — r). The projection tqU ® V|, is a proper map
which is an isomorphism ovét/ @ V|, \ |[U ® V|,_;. It defines a resolution
of singularities

o |USV], — UV,

It identifies the tangent spad&,(|U @ V|,) at a pointjo] € |U ® V|, with
the projective space of maps: U — V such thatr(Ker(o)) C a(UY). If
we viewo as a bilinear form o/ ® V'V, then the tangent space consists of
bilinear formsr € U ® V such that(u* ® v*) = 0 for all u* € !N(0),v* €
"N(o).

Here are some known properties of the determinantal varieties (see [10],
Chapter I1,85).

Theorem 4.2.1 LetMat,, x(r) C C™** m < n, be the subvariety of matri-
ces of rank< r < m. Then

e Mat,, ,(r) is an irreducible Cohen Macaulay variety of codimensjon—
r)(k —7);

e Sing(Mat,, 1 (r)) = Maty, . (r — 1);

¢ the multiplicity ofMat,, »(r) at a pointA of ranks < ris equal to

- _ 1l
mult,Mat,, . (r H (n = s+ 74!

(r—=s+)n—r+j)V

in particular,
e the degree oMat,, () is equal to

T (n+j)!5!
deg Mat,, () = multyMat,, ;. (r H e n]_i+j)
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Let¢ : E — U ® V be an injective linear map and| : |E| — |U ® V| be
the corresponding closed embedding morphism. Let

Di(¢) =1oI7 (U V) ZO(IE) N U@ Vs
We say that) : E — U ® V is proper, if
codimD,(¢) = codim|U® V|, = (m —r)(k — ).

In particular, this implies thaD,.(¢) is a Cohen-Macaulay variety of dimen-
sionn — (m —r)(k — r) in |E|. We also say thap is transversaif

Sing(lU& V|,) =|U®V],—1, 7 <min{m,k}.

Using the description of the tangent spac&6f V|, at its nonsingular point,
we obtain

Proposition 4.2.2 Assumep is proper. A pointlz] € D,(¢) \ Dy—_1(¢) is
nonsingular if and only if

dim{y € E : ¢(y)(Ker(¢(z)) @ Ker('p(z)) = 0} = n+1— (m—r)(k 7).

For example, suppose = m = dandr = d — 1. Let[z] € Dg_1(¢) \
Dgy_2(¢). Then Ker(¢(2) and Ker{¢(z)) are one-dimensional subspaces.
Let u*,v* be their respective generators. THehis a nonsingular point on
D,_1(¢) if and only if the tensow™ @ v* is not contained in the kernel of the
mapl¢: UV @ VY — EV.

For any vector spacg we denote by the trivial vector bundle$’ ® Op»
onP" with a fixed isomorphism fron# to its space of global sections. Since

Hom(L]\/(f]_),K) = HO(PnaQ(1)7Z) = EY QU Va

a linear mapp : £ — U ® V defines a homomorphism of vector bundles
UY(-1) — V. For any poinfz] € P", the fibre(U"(—1))(z) is canonically
identified withU" @ Cz and the map of fibre§ ¥ (—1)(x) — V() is the map
u® = () (u).

Assume thatc > m and ¢(x) is of maximal rank for a general point
[x] € P". Since a locally free sheaf has no nontrivial torsion subsheaves,
the homomorphisni/¥(—1) — V(1) is injective, and we obtain an exact
sequence

0-UY(-1) 2V = F—o. (4.14)

Recall that thefibre F(z) of a sheafF over a pointx is the vector space
F./m,F, over the residue field®, /m, of z. A sheaf over a reduced scheme
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is locally free of ranlk if and only if all its fibres are vector spaces of dimension
r. Passing to the fibres of the sheaves in the exact sequence, we obtain

dim F(z) = m — rank¢(x). (4.15)

In particular, ifk > m, thenF is locally free of rankn — & outsideD,,,—1 (¢)
of rankm — k. It has singularities om,,, ().

Assumem = k. Let X denote the set-theoretical support Supp@F F
and X, denote the scheme-theoretical suppotfalefined by the determinant
of ¢. It is known that the annihilator ideal Ann(/f the sheafF is equal to
(Fitty (F) : Fitto(F)), where Fitt(F) denote thditting idealsof F generated
by & — i x k — i minors of the matrix defining [228], p. 511. We will often
considerF as a coherent sheaf dfy. Note thatX = (X)eq, and, in general,
X # X,.

Let r = max{s : Ds(¢) # Di(o)}. AssumeX = X;. It follows from
(4.15) thatFqis locally free onX outsideD. For example, when the matrix
of ¢ is skew-symmetric, we expect thateq is of rank 2 outsideDy,_o(¢).

Remark4.2.1 The homomorphism: U — V of vector bundles is a special
case of a homomorphism of vector bundles on a vatétyrhe rank degener-
acy loci of such homomorphisms are studied in detail in Fulton’s book [253].

Remark4.2.2 Inview of classical geometry, determinantal varieties represent
a special case of a of a variety. Let us elaborate. Aet (a;;) be am x
k matrix, whereq;; are linear forms in variableg, ..., t,. Consider each
entry as a hyperplane Ii*. Assume that the linear forms;, . . ., a,,; in each
j-th column are linearly independent. LBt be their common zeros. These
are projective subspacestt of codimensionmn. A linear form """ | u;a;;
defines a hyperplan&;(v) containingB;. Varying us, ..., u,,, We obtain
a (n — m)-dimensional subspace of hyperplanes contaifgIn classical
language this is thstar | B;[ of hyperplanes (a pencil if: = 2, a netifm = 3,
a web ifm = 4 of hyperplanes). It can be considered as a projective subspace
of dimensionm — 1 in the dual spacéP™)". Now, the matrix defineg stars
[B, [ with uniform coordinate$us, . .., u,,). In classical languagé; collinear
m — 1-dimensional subspaces of the dual space.

Consider the subvariety @

X={zxeP":2xe€ Hi(u)N...N Hg(u), for someuy € C™}.
It is clear that
X = {z € P" : rankA(z) < m}.

If & < m,we haveX = P, so we assume that < k. If not, we replaced
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with its transpose matrix. In this way we obtain a proper subvarietf P, a
hypersurface, ifn = k, with linear determinantal representatidn= det A.
For anyz € X let

IN():={ueC™:zc Hy(u)N...N Hy(u)}.
Then the subvariety,. of X
X, ={zeX:dim'N@)>m—-r}, r<m-—1,

is the determinantal subvariety Bf* given by the condition rankA(zx r.
We have a regular map

X\ Xpoo = P71 2 |'N(2)|.
The image is the subvariety Bf*~! given by
rank L(uy, ..., upy) < n,

whereL is thek x (n + 1) matrix with js-th entry equal toy_;" , az(;)ui. If
k < n, the map is dominant, and it = n, it is birational.

4.2.2 Arithmetically Cohen-Macaulay sheaves
Let 7 be a coherent sheaf d@ and

L.(F) = DH®" F(k)).
k=0
It is a graded module over the graded ring

S =T.(Opn) = P HO(P", Opn (k) = Clto, ..., tn].
k=0

We say thatF is anarithmetically Cohen-Macaulay shegddCM sheaffor
brevity) if M = T'.(F) is a graded Cohen-Macaulay module oerRecall
that this means that every localization &f is a Cohen-Macaulay module,
i.e. its depth is equal to its dimension. Let us identify with the coherent
sheaf on Sped. The associated sheaf on ProjS is isomorphic taF. Let
U = SpecS \ mg, wheremy = (to,...,t,) is the irrelevant maximal ideal
of the graded ringS. Since the projectiod/ — Proj S = P" is a smooth
morphism, the localizations df/ at every maximal ideal different from are
Cohen-Macaulay modules if and only if

e F, is a Cohen-Macaulay module ov@%- , for all x € P™.
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The condition that the localization dff = I',.(F) atm, is Cohen-Macaulay
is satisfied if and only if the local cohomolody;, (M) vanish for alli with
0 < i < dimM. We haveH (U, M) = &z H' (P, M(k)). The exact
sequence of local cohomology gives an exact sequence

0— H.(M)— M — H°(U M) — HL(M) — 0,
and isomorphisms
HiFY (M) = HY(U,M), i>0.

In the caseM = T'.(F), the mapM — H°(U, M) = T',(M) is an isomor-
phism, hence? (M) = H} (M) = 0. Since the canonical homomorphism
1% — F is bijective, the condition#{} (M) = 0,7 > 1, become equiva-
lent to the conditions

o H (P, F(k))=0, 1<i<dimSupp(A, k€ Z.

Finally, let us remind that for any finitely generated modileover a regular
Noetherian local ring? of dimensionn, we have

depthM =n — pd M,

where pd denotes the projective dimensiodHfthe minimal length of a pro-
jective resolution of\f.

We apply this to the shed¥ from exact sequence (4.14), where we assume
thatk = m.

Exact sequence (4.14) gives us thatpd= 1 for all z € X = Supp(F.
This implies that depttF,, = n— 1 forall x € X. In particular,X is hypersur-
face inP™ and the stalks of-, are Cohen-Macaulay modules 0@ ... The
scheme-theoretical suppokt, of F is a hypersurface of degrée= k£ = m.

A Cohen-Macaulay sheaf of rank 1 is defined by a Weil divisotXamot
necessary a Cartier divisor. Recall the definitions. Xdbe a noetherian inte-
gral scheme of dimensior 1 and X" be its set of points of codimension
1 (i.e. pointsz € X with dimOx, = 1). We assume thak is regular
in codimension 1, i.e. all local rings of points froM(!) are regular. In this
case we can defind/eil divisorson X as elements of the free abelian group
WDiv(X) = zX" and also define linear equivalence of Weil divisors and the
group C1(X) of linear equivalence classes of Weil divisors (see [311], Chap.
2, 86).

We identify a pointz € X with its closureE in X. We call it anirre-
ducible divisor. Any irreducible reduced closed subschéfrad codimension
1is anirreducible divisor, the closure of its generic point.
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For any Weil divisorD let Ox (D) be the sheaf whose section on an open
affine subselU consists of functions from the quotient fied@(O(U)) such
that div(®) +D > 0.

It follows from the definition thatDx (D) is torsion free and, for any open
subsetj : U — X which contains all points of codimension 1, the canonical
homomorphism of sheaves

Ox(D) = j.j"Ox(D) (4.16)

is an isomorphism. These two conditions charactegflexive sheaveasn any
normal integral schem#&. It follows from the theory of local cohomology that
the latter condition is equivalent to the condition that for any poigt X with
dim Ox , > 2 the depth of th&Dx ,-moduleF, is greater than or equal to
2. By equivalent definition, a reflexive sheafis a coherent sheaf such that
the canonical homomorphistA — (FV)V is an isomorphism. The sheaves
Ox (D) are reflexive sheaves of rank 1. Conversely, a reflexive shedfank
1 on a normal integral scheme is isomorphi€lg (D) for some Weil divisor
D. In fact, we restrictF to some open subsgt U — X with complement of
codimensior> 2 such thatj* F is locally free of rank 1. Thus it corresponds
to a Cartier divisor ori/. Taking the closure of the corresponding Weil divisor
in X, we get a Weil divisoD on X and it is clear tha¥ = j,j*F = Ox (D).
In particular, we see that any reflexive sheaf of rank 1 on a regular scheme is
invertible. It is not true for reflexive sheaves of rankl. They are locally free
outside of a closed subset of codimensioi3.

Reflexive sheaves of rank 1 form a group with respect to the operation

L-G=((L2G)V)Y, L1=CLY.
For any reflexive sheaf and an integen we set
L = ((c=m¥)Y.
One checks that
Ox(D+ D')=0x(D)-Ox(D")

and the mapD — Ox (D) defines an isomorphism from the gro@i(X) to
the group of isomorphism classes of reflexive sheaves of rank 1.

Next, we look at the exact sequence of cohomology for (4.14). Using that
H (P, Opn(j)) =0fori #0,nand allj € Z,

HY(P", F(k))=0, 1<i<n—1=dimSupp(F, k € Z.
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Thus F satisfies the two conditions from above to be an aCM sheaf. For the
future use, observe also that

V= HYP", V) = HO(P", F). (4.17)

Applying the functorHomo,. (—, Op»(—1)) to (4.14), we obtain an exact
sequence

0— Kv —-U—G—0,
where
g = Srta}m (F,Opn(—1)). (4.18)

The sheafj plays the role ofF when we interchange the roles@fandV'. In
the following we use some standard facts from the Grothendieck-Serre Duality
(see [297]). We have

Ext}gﬂm (F,Opn(—1)) =2 Homo, (F, Ext}glm (Ox.,0pn(-1)))
= Homoy (F, Emt}%” (Ox,,wpn))(n) = Homoy_(F,wx,)(n)

= Homoy, (F,Ox, (d—n—1))(n) = F'(d-1),
whereFY = Homo,_(F,Ox,). Thus (4.18) becomes
G = Homo,, (F,wx,)(n) = F(d-1). (4.19)

This agrees with the theory from the previous subsection.
SupposeF is of rank 1 andX is a normal variety. ThetF = Ox (D) for
some Weil divisorD, and

G = Ox(~D)(d—1).

We have seen how a determinantal representation of a hypersurf&€e in
leads to an aCM sheaf dfi*. Now let us see the reverse construction. Fet
be an aCM sheaf ofi™ supported on a hypersurfagé SinceM = T',.(F) is
a Cohen-Macaulay module ov8r= T'.(Op~) of depthn — 1, its projective
dimension is equal to 1. Since any graded projective module over the polyno-
mial ring is isomorphic to the direct sum of free modules of rank 1, we obtain
a resolution

m

0— @S[—bi] — @S[—ai] — T, (F) —0,

i=1
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for some sequences of integéus) and(b;). Passing to the associated sheaves
on the projective space, it gives a projective resolutioft of

m

0 — P O (i) % P Opn(—a;) — F — 0. (4.20)
i= i=1

The homomorphism of sheaveds given by a square matriA of sizem. Its
ij-th entry is a polynomial of degrég — a;. The supportX of F is equal to
V(det A)red. The degree o = V(det A) is equal to

d=(b1+ - 4bmn)—(a1+ 4+ am). (4.21)

We assume that the resolution is minimal, he.< qa; for all 4, j. This can

be always achieved by dropping the isomorphic summands in the first and the
second module. The case we considered before is a special case-vidian

aCM sheaf for which

a1 =...=ap, =0, by=...=b, =-1 (4.22)
In this caseA is a matrix of linear forms and = m.

Proposition 4.2.3 Let F be an aCM sheaf oi*” supported on a reduced
hypersurfaceX and let(4.20)be its projective resolution. Thegd.22)holds if
and only if

HO(P",]:(—l)) — 0’ Hn—lapn’]:(l _ n)) o~ HO(]P’", g(_l)) =0.
(4.23)

Proof By duality,
H" Y P, F(1 —n)) = H"YX,F(1—n))
~ HY(X,Homo, (F(1 —n),wx)) = H*(X,G(-1)) = 0.

Taking global sections in the exact sequence (4.20), we immediately get that
all a; are non-positive. Taking higher cohomology cohomology, we obtain

H" Y (P", F(1 —n)) = éH”(I@”, Opn(=b; +1 —n))

i=1

== é O]Pm b - 2)) 0

Sinceb; < a; <0, this implies that alb; = —1. O
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Let F be an aCM sheaf defining a linear determinantal representation of a
normal hypersurfac&’. We assume that rank = 1. We have a rational map

t: X --»>PU), =z |Ker(¢(zx))]

The map is defined on the complement of the openXSetthere F is locally
free. We know thatF = Oy (D) for some effective Weil divisoD. The sheaf
FV = Ox(—D) is an ideal sheaf oX. Letb : X — X be the blow-up of
the ideal sheaf7;. It resolves the mapin the sense that there exists a regular
map

t: X - PU)

such that = t o 7~ (as rational maps). We will explain this in more detail in
Chapter 7.

4.2.3 Symmetric and skew-symmetric aCM sheaves

Let 7 be an aCM sheaf o™ whose scheme-theoretical support is a hypersur-
face X ; of degreed. Suppose we have a homomorphism of coherent sheaves
on X,

a:F — FY(N) (4.24)

for some integeV. Passing to duals, we get a homomorphishY )V (- N) —
FV. After twisting byr, we get a homomorphisif#")¥ — F(NN). Compos-
ing it with the natural homomorphisth — (FV)V, we get a homomorphism

ta: F— FY(N)

which we call theransposeof a.

We call the pail( F, «) as above a-symmetric sheaif « is an isomorphism
andfa = e, wheree = +1. We say it is symmetric it = 1 and skew-
symmetric otherwise.

We refer for the proof of the following result to [69] or [37], Theorem B.

Theorem 4.2.4 Let(F, o) be ane-symmetric aCM sheaf. Assume that =
X. Then it admits a resolution of the for{#.20), where

(a1,...,am) =01+ N —d,... by + N —d),

and the map is defined by a symmetric matrixeit= 1 and a skew-symmetric
matrix if e = —1.
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Corollary 4.2.5 SupposéF, «) is a symmetric sheaf witN' = d — 1 satisfy-
ing the vanishing conditions fro(d.23). TherF admits a projective resolution

0—UY(-1) 52U —~F—0,

whereU = H°(P",F) and ¢ is defined by a symmetric matrix with linear
entries.

Note that the isomorphism defines an isomorphism : 7 — G and
an isomorphism/ = H°(P", F) — U = H°(P",G). Suppose: is even.
Twisting the isomorphisn# — G = Homo,_ (F,wx,)(n) by —3n, we
obtain an isomorphism

f‘(_%n) — Homoy (F(—n),wx,)-

Definition 4.2.1 A rank 1 torsion-free coherent sheabn a reduced variety
Y with canonical sheafvy is called atheta characteristid there exists an
isomorphism

a: 0 — Homo, (6,wy).

Note that in the case when a theta characteristis an invertible sheaf, we
obtain

[,®2 = wy

which agrees with our previous definition of a theta characteristic on a nonsin-
gular curve. IfX is a normal variety, ané is a reflexive sheaf (e.g. a Cohen-
Macaulay sheaf), we know thét= O (D) for some Weil divisorD. Thend

must satisfyOx (2D) = wx. In particular, ifwy is an invertible sheaf is a
Q-Cartier divisor.

Sincea and!« differ by an automorphism af, and any automorphism of a
rank 1 torsion-free sheaf is defined by a nonzero scalar multiplication, we can
always choose an isomorphisiadefining a structure of a symmetric sheaf on
6.

Let X be a reduced hypersurface of degieim P" and# be a theta char-
acteristic onX. Assumen = 2k is even. ThenF = 0(k) satisfiesF (k) =
F(k)V(d—1) and hence has a structure of a symmetric sheaf With d — 1.
Assume also thad, considered as a coherent sheafl¥h is an aCM sheaf.
Applying Corollary4.2.5, we obtain thatF admits a resolution

d d
0— @(’)pn(—ai -1 @Opn(—ai) —F —0.
i=1

i=1
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From (4.19), we obtain tha = FV(d — 1) = F. The vanishing conditions
from Propositio.2.3translate into one condition:
HY(X,0(k—1))=0. (4.25)

If n = 2, this matches the condition thatis a non-effective theta charac-
teristic. If this condition is satisfied, we obtain a representationXoés a
determinant with linear entries. The number of isomorphism classes of such
representations is equal to the number of theta characteristi&ssatisfying
condition (4.25)

4.2.4 Singular plane curves

Assumen = 2, and letC be a reduced irreducible curve of degreé et 7 be

a coherent torsion-free sheaf 6h Sincedim C = 1, F is a Cohen-Macaulay
sheaf. Also, the cohomological condition for an aCM sheaf are vacuous, hence
F is an aCM sheaf. In general, a Cohen-Macaulay moddle@ver a local
Noetherian ringR admits a dualizing?-moduleD, and

depthM + max{q : Ext,(M, D) # 0} = dim R
(see [228]). In our case, the global dualizing sheaf is
we = wp2(C) = Oc(d — 3),
the previous equality implies thﬂtrt‘ggc (F,we) =0, ¢>0,and
F — D(F) := Homo (F,we) 2 FY @ we

is the duality, i.eF — D(D(F)) is an isomorphism.
If F satisfies the conditions from Propositir2.3

H°(C,F(-1)) = HY(C,D(F)(-1)) =0, (4.26)

we obtain a determinantal representati@n= V' (det A) with linear entries
(4.14). For a general point on C, the corank of the matri¥(x) is equal to
the rank of 7. We shall assume that

rank F = 1.

In this caseF is isomorphic to a subsheaf of the constant sheaf of rational
functions onC'. It follows from the resolution ofF that

X(F(-1)) =0, x(F)=d.
Thus
deg F(—1) :== x(F(=1)) + pa(C) — 1 = pa(C) — 1.
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Also,
deg F =deg D(F) =d+po(C)—1=d(d—1)/2.

Supposer is a singular point ofC. Then either rankA(x)< d — 1, or the
image of the map : P? — |U x V|4_; is tangent tdU x V|,_; at a point
o(x) & |U x V]4—2. The sheafF is not invertible at: only in the former case.

It is known that the isomorphism classes of rank 1 torsion-free sheaves of
fixed degreel on an irreducible reduced algebraic cuiweadmit a moduli
space which is a projective variety that contains an irreducible component
which compactifies the generalized Jacobian variety (@&cof C' (see [8],
[499]). In the case of plane curves (and, B99], only in this case), the mod-
uli space is irreducible. Its dimension is equaptdC'). We denote the moduli
space byiac (O).

Let us describe in more detail rank 1 torsion free shedves C.

Letp : C — C be the normalization morphism. Its main invariant is the
conductor ideat, the annihilator ideal of the sheafOs. Obviously, it can be
considered as an ideal sheafGhequal top~—!(c) (the image ofp*(c) in Ox
under the multiplication map, or, equivalently,(c)/torsion). For anyc € C,
¢, is the conductor ideal of the normalizati®of the ringR = Oc¢,, equal to
Hy*?:l) Oéy. Let

5. = lengthR/R.

Since, in our caseR is a Gorenstein local ring, we have
dim(c R/Cz =2 dim(c R/CI =20

(see [575], Chapter 4, n.11).

SupposeR is isomorphic to the localization &|u, v]]/(f(u,v)) at the ori-
gin. One can comput&,, using the followinglung-Milnor formula(see [360],
[430], §10).

dege, =dime R/Jy +ry — 1, (4.27)
whereJy is the ideal generated by partial derivativegpéndr; is the number
of analytic branches af’ at the pointz.

Let F be the cokernel of the canonical injection of sheaes— p.(Op).
Applying cohomology to the exact sequence

0—0Oc¢ —p:0Os—F—0, (4.28)
we obtain thegenus formula

X(p+(0c)) = x(0g) = x(Oc) + D b (4.29)

zeC
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Consider the sheaf of algebrédad(F) = Home (F,F). SinceEnd(F)
embeds int&nd(F, ), wheren is a generic point of’, and the latter is isomor-
phic to the field of rational functions ofi, we see thaEnd(F) is a coherent
O¢-algebra. It is finitely generated as’®-module, and hence it is finite and
birational overC. We setC’ = SpecEnd(F) and let

m=nr:C" —=C

be the canonical projection. The normalization n@ap— C factors through
the mapmr. For this reasony is called thepartial normalizationof C. Note

thatC’ = C'if F is an invertible sheaf. The algebfad(F) acts naturally on
F equipping it with a structure of &..-module which we denote h§’. We

have

FnF.

Recall that for any finite morphisrfi: X — Y of Noetherian schemes there is
a functorf' from the category of)y-modules to the category 67y -modules
defined by

f!M = HomOy (f*OX7M)7

considered as & x-module. The functoy’ is the right adjoint of the functor
[« (recall thatf* is the left adjoint functor off.), i.e.

f*HomOX (Nvf'M) = HOmOY(f*N,M), (4.30)
as bi-functors inM, NV If X andY” admit dualizing sheaves, we also have
floy 2wx

(see [311], Chapter lll, Exercises 6.10 and 7.2).
Applying this to our mapr : C’ — C, and takingV/ = O, we obtain

FerrF.

It is known that any torsion-free sheavdsand3 on C’ a morphismr,.A —
m.B is m.Oc.-linear (see, for example, [36], Lemma 3.1). This implies that
the natural homomorphism

Home, (A, B) = Home/ (. A, 7. 8) (4.31)

is bijective. This gives
!

F=2nF.
For anyF’ € ﬂél(C’)),
X(F) =d +x(C")
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(in fact, this equality is the definition of the degree®f, see [445])
d=degm.F = x(m.F') — x(Oc)

=X(F) = x(0¢) = d' + x(Ocr) — x(Oc).

Definition 4.2.2 The collection of)¢ ,-modulesF,, z € Sing(C), is called
thelocal typeof F ([483]). Theglobal invariantis the isomorphism class of
5ndoc (.7:)

It follows from Lemma 1.7 in [483] that the global type &f determines
the isomorphism class of, up to tensoring with an invertible sheaf. Also itis
proven in the same Lemma that the global type depends only on the collection
of local types.

Lemma4.2.6 The global types af and D(F) are isomorphic, and
7' D(F) = D(x' F).

Proof The first assertion follows from the fact that the dualizing functor is
an equivalence of the categories. Takifiy = w¢ in (4.30) , we obtain that
7.(D(m' F)) = D(F). The second assertion follows from (4.31). O

In fact, by Lemma 3.1 from36], the map
T : ﬁéi/(C') — ﬁg(C)
is a closed embedding of projective varieties.
It follows from the duality that (F) = —x(D(F)). Thus the functofF —

D(F) defines an involutioD¢ on ﬁé”"'(c,)*l(c’) and an involutionD¢

on — ﬁé’“(c)_l(C). By Lemma4.2.6, the morphisnr,, commutes with the
involutions.

Let us describe the isomorphism classes of the local typés. dfet 7 =
p~1(F) = p*(F)/torsion. This is an invertible sheaf @i The canonical map
F — p.(p*F) defines the exact sequence

0—F —pF—T—0, (4.32)

whereT is a torsion sheaf whose support is contained in the set of singular
points ofC.
The immediate corollary of this is the following.

Lemma4.2.7 Foranyz € C,
dim¢ F(z) = mult,C,
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whereF (z) denotes the fibre of the shefandmult,C denotes the multiplic-
ity of the pointz on C.

Proof Since the cokernel of — p, F is a torsion sheaf, we have
dime F(z) = dime F(z) = dime p, (O ) (z). (4.33)

It is clear that the dimension of the fibre of a coherent sheaf is equal to the
dimension of the fibre over the closed point of the formal completigh,ol et
R (resp.R) denote the formal completion 6f¢ ,, (resp. its normalization). We
knowthatR = [], ., R,, whereR, = C[[t]]. Let(u, v) be local parameters in
R generating the maximal ideal of R. One can choose the latter isomorphism
in such a way that the composition of the m@p— R with the projection map
R — R; is given by

(w,0) = (87, D ast!),

Jj=m;

wherem; is the multiplicity of the analytic branch of the cur¢ecorrespond-
ing to the pointy overz. It follows that

dime R/m = dimc H C[e])/ (™) = Z m; = mult,C.
i=1 i=1
Thus the last dimension in (4.33) is equal to the multiplicity, and we are done.
O

Corollary 4.2.8 SupposeF satisfieq4.26), and hence defines a linear deter-
minantal representatiof’ = V' (det A). Then

d —rank A(xz) = mult,C.

We denote by, (F) the length ofZ,. The lengths,. (F) of 7, is the local
invariant of theO¢ ,-moduleF, (see [292]). LetM be a rank 1 torsion-free
module overR = O¢, and M = M ® Ritorsion. LetQ be the fraction
field of R. SinceM ®r @ = @, one can find a fractional ideal isomorphic
to M. It is known that the isomorphism class &f can be represented by a
fractional ideal/ with local invarianty(M) = dim M /M contained in? and
containing the ideal( R), wherec(/) is the conductor ideal aR. This implies
that local types ofF atz with 6,,(F) = § are parameterized by the fixed locus
of the groupR* acting on the Grassmann variety(s, R/c.) = G(4,25) (see
[292], Remark 1.4, [499], Theorem 2.3 (d)). The dimension of the fixed locus
is equal tod,.. Thus local types with fixed local invariantare parameterized
by a projective variety of dimensiah
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Example4.2.1 LetC’ is the proper transform of' under the blow-up of a
singular pointz € C of multiplicity m,,. Since it lies on a nonsingular surface,
C"is a Gorenstein curve. The projection C' — C'is a partial normalization.
Let 7 = m.Oc/. Thenmg?, contains the conducter, andc(F,) = mpe
hences, (F) = m, — 1 (see [499], p. 219). '

Let F define a linear determinantal representatiba: V (det A). We know
that D(F) defines the linear representation corresponding to the transpose ma-
trix *A. The case whetF = D(F) corresponds to the symmetric mateix
We assume that rank = 1, i.e. F is a theta characteristiton C.

By duality, the degree of a theta characterttics equal top,(C) — 1 and
x(#) = 0. We know that each theta characteridtics isomorphic tor.¢’,
wheref’ is a theta characteristic on the partial normalizatiod®adefined by
6. Since, locallyEnd(f’) = O¢, we obtain that’ is an invertible sheaf on
.

Let Jac(X)[2] denote the 2-torsion subgroup of the group Jac¢fisomor-
phism classes of invertible sheaves on a cuxvé/ia tensor product it acts on
the set TChar(('of theta characteristics afi. The pull-back map* defines
an exact sequence

0 — G — Jac(CQ) — Jac(C) — 0. (4.34)

The group Jaal) is the group of points on the Jacobian variety@f an
abelian variety of dimension equal to the genusf C. The groupG =
OF/Og has a structure of a commutative group, isomorphic to the product of
additive and multiplicative groups @. Its dimension is equal t6 = 3" _ 4.

It follows from the exact sequence that

Jac(0)[2] = (7./27,)?91°, (4.35)

wherek is equal to the dimension of the multiplicative part®flt is easy to
see that

b= #p !(Sing(C)) — #Sing(C) = > (r, — 1). (4.36)

Lemma 4.2.9 LetF andF’ be two rank 1 torsion-free sheaves 6rof the
same global type defined by the partial normalization ¢’ — C. Then
™ F @ L = F' for some invertible sheal if and only if7* £ = O¢».

Proposition 4.2.10 The groupJac((J[2] acts transitively on the set of theta
characteristics with fixed global type. The order of the stabilizer subgroup of
a theta characteristi@d is equal to the order of the-torsion subgroup of the
kernel ofr* : Jac(C) — Jac(C).
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Proof Let 6,6’ € TChar(C) with the isomorphic global type. Since two
sheaves with isomorphic global type differ by an invertible sheaf, we have
0" = 0 ® L for some invertible sheaf. This implies

L2 Que 2V RL ' Que 20QL T 20 L.

By Lemma 2.1 from 36], 7*F = =*F ® L for someL € Jac(C} if and only
if 7L = Ocr. This givest*£? = O¢s and hencer*(£) € Jac(C)[2]. It
follows from exact sequence (4.34) (whéfés replaced withC”) that Jac(C)
is a divisible group, hence the homomorphisin: Jac(Cj[2] — Jac(C)[2]
is surjective. This implies that there existd € Jac((J[2] such thatt* (£ ®
M) = O¢r. Thus, we obtain

P OIMZOIQLRIM =24.

This proves the first assertion. The second assertion follows from the loc. cit.
Lemma. O

Corollary 4.2.11 The number of theta characteristics of global type defined
by a partial normalizationr : ¢’ — C is equal t0229+t>="" wheret/ =

#m1(Sing(C)) — #Sing(C).

Recall that a theta characterisficefines a symmetric determinantal repre-
sentation o if and only if it satisfiesh®(#) = 0. So, we would like to know
how many such theta characteritics. A weaker condition is/tA@t) is even.
In this case the theta characteristic is cakbedn, the remaining ones are called
odd. The complete answer on the number of even theta characteristics on a
plane curve” is not known. In the case whéne Jac(C), the answer, in terms
of some local invariants of singularities, can be found in [306] (see &3d][
for a topological description of the local invariants). The complete answer is
known in the case whefi hassimple(or ADE) singularities.

Definition 4.2.3 A singular pointx € C is called asimple singularityif its
local ring formally isomorphic to the local ring of the singularity at the origin
of one of the following plane affine curves

a2 +yFtl =0, k>1,

dy:2?y+yF1=0, k>4

eg xS +yt =0,

er:xd +ay® =0,

eg:x® +y° =0.

According to [291], a simple singularity is characterized by the property that
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there are only finitely many isomorphism classes of indecomposable torsion-
free modules over its local ring. This implies that the set TChaisdinite if
C'is a plane curve with only simple singularities.

The number of even theta characteristics on an irreducible reduced plane
curveC with only simple singularities is given in the following Theorem due
to [483].

Theorem 4.2.12 The number of invertible even theta characteristicgois

229+k=1 if C' has anAy,y 1, Dysy2, OF E7 singularity,
229tk=1(29 1 1) if C has no singularities as above, and has an even number

of typesAgsi2, Ags+3, Ags+4, Dgst3, Dgsya, Dgsys, Ee,
229tk=1(29 1 1) otherwise.

The number of non-invertible even theta characteristics on a curve with sim-
ple singularities depends on their known local types. An algorithm to compute
them is given in [483].

Example4.2.2 LetC be a plane irreducible cubic curve. Suppose it has an
ordinary node. This is a simple singularity of tyde. We have Jac({’~ C*

and Jac((Q[2] = Z/2Z. The only partial normalization is the normalization
map. There is one invertible theta characterigtiovith 1°(6;) = 0 and one
non-invertible theta characterisie = p. O (—1) with h°(6,) = 0. It is iso-
morphic to the conductor ideal sheaf 6h Thus there are two isomorphism
classes of symmetric determinant representation§’fdtVithout loss of gen-
erality we may assume thét = V (tgt3 + 3 + tot7). The theta characteristic

0, defines the symmetric determinantal representation

0 t t
tols + 13 +tot; =det [ta —tog—t; O
t 0 —to

Observe that the rank(x) = 2 for all pointsz € C. The theta characteristic
0, defines the symmetric determinantal representation

-t 0 -t
tots + 13 +tot; =det | 0 t;  —ty
—t1 —ta —t

The rank ofA(z) is equal tol for the singular point: = [1, 0, 0] and equals 2
for other points orC.
Assume now tha€' is a cuspidal cubic with equatiori(¢ot3 + ¢3). There
are no invertible theta characteristics and there is only one non-invertible. It is
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isomorphic to the conductor ideal sheaf ©nlt defines the symmetric linear
determinantal representation

0 —ty —t
tots +13 =det | =ty —t; 0
—t1 0 —tp

Remark4.2.3 We restricted ourselves with irreducible curves. The case of
reducible nodal curves was studied in [74].

4.2.5 Linear determinantal representations of surfaces

Let S be a normal surface of degréen P2. We are looking for an an aCM
sheafF onP? with scheme-theoretical support equabtoNVe also require that
Fis of rank 1 and satisfies the additional assumption (4.23)

HY(P?, F(—1)) = H*(P?, F(—2)) = 0. (4.37)

Every suchF will define a linear determinantal representatipn= det A
defined by the resolution (4.14) &f such that rankd (z) = d— 1 for a general
point onsS.

Since exact sequence (4.14) implies tifats generated by its global sec-
tions, we see thaF = Og4(C) for some effective Weil diviso€'. By taking a
general section af and applying Bertini’s Theorem, we may assume that
is an integral curve, nonsingular outside of Sing(S

Recall that, as an aCM shedf, satisfies the cohomological condition

HY(P3, F(j)) =0, j€Z. (4.38)

Let s be a nonzero section gf whose zero subscheme is an integral curve such
thatF = Og(C). The dual of the mas > £ defines an exact sequence

0— F'(j) = Os(j) = Oc(j) — 0. (4.39)
By Serre’s Dulaity,
HY(S,FY(4) 2 H' (S, F(—j) ®wg) 2 H'(S,F(d—4—j)) = 0.
Applying cohomology, we obtain that the restriction map
H(S,05(5)) — H°(C,0c(5)) (4.40)

is surjective for allj € Z. Recall that, by definition, this means th@tis
projectively normain P3. Conversely, ifC' is projectively normal, we obtain
(4.38).
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Before we state the next Theorem we have to remind some facts about the
intersection theory on a normal singular surface (see [444]).

Leto : S — S be aresolution of singularities which we always assume to
be minimal. Letf = Zie[ E; be its reduced exceptional locus. For any curve
C on S we denote by —1(C) the proper transform of and define

o (C) =mHC)+ > niE;,
icl
wheren; are rational numbers uniquely determined by the system of linear
equations

0=0"(C)-Ei=-7m""(C)-E;+Y mE;-E;=0, jel
i€l
Now we define the intersection numb@&r C’ of two curvesS by
C-C"=0"(C)-a*(C").

This can be extended by linearity to all Weil divisors 8nlit coincides with
the usual intersection on the subgroup of Cartier divisors. Also it depends only
on the equivalence classes of the divisors.

Recall thatS admits a dualizing sheafs. It is a reflexive sheaf of rank 1,
hence determines the linear equivalence class of a Weyl devisors denoted by
K (the canonical clasf S). It is a Cartier divisor class if and only § is
Gorenstein (as it will be in our case whgris a hypersurface). We have

Kg = O'*(Ks) + A,

whereA = 3", a;R; is thediscrepancy divisor. The rational numbessare
uniquely determined from linear equations

K ~Rj = ZaiRi . R]‘, j € I.
iel
For any reduced irreducible cur¢eon S define
As(C):=-L(0*(C) -0 )P +i07" A=y,
whered = h?(p*Os/O¢) is our familiar invariant of the normalization 6t.
The following results can be found in [44].

Proposition 4.2.13 For any reduced curvé€’' on S and a Weil divisorD let
Oc¢(D) be the cokernel of the natural injective mély (D — C) — O(D)
extending the similar map afi \ Sing(S). Then

(i) C — Ag(C) extends to a homomorphisWDiv(S)/Div(S) — Q
which is independent of a resolution;
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(i) x(Oc(D)) =x(0c) +C-D—2A5(C),
(i) —2x(Oc) =C2 + C - Ks — 245(C).

Example4.2.3  Assume that has only ordinary double points. Then a min-
imal resolutions : S” — S has the properties thdt = 0 and€ = Ry +
...+ Ry, wherek is the number of singular points and eakhis a smooth
rational curves withR; - Kg» = 0 (see more about this in Chapter 8). Let
o~ Y(C) - E; = m;. Then easy computations show that

Now we are ready to state and to prove the following theorem.

Theorem 4.2.14 Let F be an aCM sheaf of rank 1. Thef defines a lin-
ear determinantal representation 6fif and only if 7 = Og(C) for some
projectively normal integral curvé’ with

degC = Ld(d—1), pa(C) = %(df 2)(d — 3)(2d + 1).

Proof SupposeF defines a linear determinantal representatio§.ofhen it
is a aCM sheaf isomorphic t0¢(C) for some integral projectively normal
curveC, and satisfies conditiond.37), (4.38).

We have

X(F(=1)) = h(F(=1)) + BN (F(=1)) + h*(F(-1)).

By (4.37) and 4.38), the right-hand side is equal k8(F(—1)). Let H be a
general plane section ¢f and

0—0gs(—H) - 0Og — 0Oy —0 (4.41)

be the tautological exact sequence defining the ideal shefdf densoring it
by F(—1), we obtain an exact sequence

0—F(-2)— F(-1) - F(-1) @ Oy — 0.
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It shows that the conditioh?(F(—2)) = 0 from (4.37) impliesh?(F(—1)) =
0, hence

x(F(-1))=0. (4.42)
Similar computation shows that
x(F(=2))=0. (4.43)

Tensoring exact sequence (4.41) ©y(C — H), we obtain an exact se-
guence

0 — F(=2) = F(=1) —» Ox(C — H) — 0.
Applying the Riemann-Roch Theorem to the sh@af(C — H) on H, we get
degOp(C — H)) =degC —d = x(0Ou(C — H)) — x(Og)
= xX(F(-1)) = x(F(=2)) = x(On) = —x(On).
This gives
degC=d—x(Op)=d—1+1(d—1)(d—2) = 3d(d-1),

as asserted.
Applying Proposition4.2.13(ii), we get,

X(O¢)=—-C-C+C-H+ x(Oc(C—H))+2A5(C)

=degC — C? + x(Oc(C — H)) + 245(C).
By Proposition4.2.13(iii),
C? = —C-Kg—2x(0¢)+245(C) = —(d—4) deg C—2x(O¢) +245(C),
hence

—Xx(Oc¢) = (d = 3)deg C + x(Oc(C — H)).
The exact sequence

0 — Os(—H) — Og(C — H) — Oc(C — H) — 0
gives
X(Oc(C = H)) = x(F(-1)) = x(Os(-1)) = =x(Os(-1)).

Easy computations of the cohomology of projective space gives

xOs-) = ).
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Combining all together, we obtain

Pe(€) =1 X(0c) =1+ bdld ~1)(d ~3) ~ zd(d — 1)(d ~2)

- %(d —2)(d —3)(2d + 1),

as asserted. We leave to the reader to reverse the arguments and prove the
converse. O

Example4.2.4 We will study the case of cubic surfaces in more detail in
Chapter 9. Let us consider the case of quartic surfaces. Assume firsf that
is nonsingular. ThetF 22 Og(C), whereC' is a projectively normal smooth
curve of degre& and genus3. The projective normality is equivalent to the
condition thatC'is not hyperelliptic (Exercise 4.10). We also ha¢Ox (C))

= 4. According to Noether’'s Theorem, the Picard group of a general surface of
degree> 4 is generated by a plane section. Since a plane section of a quartic
surface is of degree 4, we see that a general quartic surface does not admit
a determinantal equation. The condition tBatcontains a curve& as above
imposes one algebraic condition on the coefficients of a quartic surface (one
condition on the moduli of quartic surfaces).

Suppose now tha$ contains such a curve. By (4.18), the transpose deter-
minantal representatioff = det’A is defined by the she&d =~ FV(3) =
Os(3H — C), whereH is a plane section of. We have two maps: S —

P3.v : S — P3 defined by the complete linear systepdd and |3H — C|.
SinceC? = —C- K5 — 2x(O¢) = 4, the images are quartic surfaces. We will
see later, in Chapter 7, that the two images are related by a Cremona transfor-
mation from|UV| = |C|Y to |VV| = |3H — C|V.

We will find examples with singular surfacein the next subsection.

4.2.6 Symmetroid surfaces

These are surfaces i which admit a linear determinantal representation
S = V(det A) with symmetric matrixA. The name was coined by A. Cayley.

According to our theory the determinantal representation is given by an aCM
sheafF satisfying

F2FY(d-1). (4.44)
For example, ifS is a smooth surface of degrégwe haveF = Og(C') and we
must haveC ~ (d — 1)H — C, whereH is a plane section. Thus, numerically,
C = 3(d—1)H, and we obtairC? = 1d(d—1)*,C-Kg = 1d(d—1)(d—4),
andp,(C) = 1+ 2d(d — 1)(d — 3). It is easy to see that it disagrees with
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the formula forp,(C) for anyd > 1. A more obvious reason why a smooth
surface cannot be a symmetroid is the following. The codimension of the locus
of quadrics inP? of corank> 2 is equal to3. Thus each three-dimensional
linear system of quadrics intersects this locus, and hence at somerpoift
we must have rank(z) < d — 2. Since our sheaF is an invertible sheaf, this
is impossible.

So we have to look for singular surfaces. Let us state the known analogue of
Theoremd.2.1in the symmetric case.

The proof of the following Theorem can be found in [308] or [358]).

Theorem 4.2.15 LetSym,, be the space of symmetric matrices of sizand
Sym,, (r) be the subvariety of matrices of raskr < m. Then

e Sym_(r) is an irreducible Cohen-Macaulay subvariety of codimension
m,
Lm—r)(m—r+1).
e Sing(Sym, (r)) = Sym,,(r —1).
) (n+i+mfr)
e degSing(Sym,, (7)) = [o<i<m—r_1 ﬁ

7

For example, we find that

degQ2(2) =4, degQq-1(2) = <d—§ 1)- (4.45)

Thus, we expect that a general cubic symmetroid has 4 singular points, a gen-
eral quartic symmetroid has 10 singular points, and a general quintic sym-
metroid has 20 singular points.

Note that a symmetroid surface of degteis the Jacobian hypersurface of
the web of quadric$l defined by the image of map: P> — Q,_; defined
by the determinantal representation. We iden(#y with a web of quadrics
in P(U). The surfaceS is the discriminant hypersurfadg(|E|) of W. The
left kernel mapl : S --» P4~! given by|Os(C)| mapsS onto the Jacobian
surface Jac(|f inP(U). | E| is a regular web of quadrics iZ| intersects the
discriminant hypersurface of quadricsU) transversally. In this case we
have the expected number of singular pointssoand all of them are ordinary
nodes. The surfacé admits a minimal resolution : S := D(|E|) — S. The
mapl = oo~ !, wherel : § — Jac(|H). The map is given by the linear
system|o—1(C)|. The Jacobian surface is a smooth surface of degree equal to
o 1(C)2.

Proposition 4.2.16 Let .S’ be the Jacobian surface ¢F|, the image ofS
under the right kernel map. Assume thatE| is a regular web of quadrics.
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ThenPic(9') contains two divisor classeg h such thath? = d,n* = (%),

3
and
k

2 =(d—1)h—->» R
i=1

whereR; are exceptional curves of the resolution S — S.

Proof We identify S’ with the resolutionS by means of the map We take
h = o*(Og|(1)) andn to bet*(Os(1)). We follow the proof of Proposition
4.1.4to show that, under the restrictid®p ) (2)| — |Os/(2)], the web of
quadrics| E| in |Op(y(2)| is identified with the linear system of polars &f
This is a sublinear system {@s((d — 1)|. Its preimage inS'is contained in
the linear systeni(d — 1)h — Zle R;|. It is clear thath? = d. It follows
from Propositiord.2.15, thatin? = (d — 1)2d — 2(*{"). This easily gives the
asserted value of?. O

Corollary 4.2.17
deg S’ =n* = ().
Using the adjunction formula, we find

2pa(n) =2 =3 +1-Kg = 1° + 3d(d = 1)(d—4) = (§) +5d(d—1)(d—4)

_ %d(d _1)(2d 7).

This agrees with the formula for, (C) in Theorem4.2.14.

It follows from the Proposition that the theta characterigtidefining the
symmetric determinantal representationSois isomorphic toOg(C), where
C = 0.(D) for D € |n|. We haveDg(C)®? 2 Og(d — 1) outside of Sing(J.
This givesd!?l =~ Og(d — 1).

Remarkd4.2.4 Suppos€ is odd. Let

g=3d-Dh—n=> R
If dis even, we let

g=3dh—n=h+> R
i=1
So, the set of nodes is even in the former case and weakly even in the latter case
(see in [72]). The standard construction gives a double covél aamified
only over nodes if the set is even and over the union of nodes and a member of
|h| if the set is weakly even.
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The bordered determinant formula (4.10) for the family of contact curves
extends to the case of surfaces. It definggla 1)-dimensional family of
contact surfaces of degrde- 1. The proper transform of a contact curvedh
belongs to the linear system|.

Example4.2.5 We will consider the casé = 3 later. Assumel = 4 and
the determinantal representation is transversalSileas the expected number
10 of nodes. LetS’ be its minimal resolution. The linear systepconsists
of curves of genus 3 and degree 6. It mafissomorphically onto a quartic
surface inP3, the Jacobian surface of the web of quadrics defined by the de-
terminantal representation. The family of contact surfaces is a 3-dimensional
family of cubic surfaces passing through the nodeS§ ahd touching the sur-
face along some curve of genus 3 and degree 6 passing through the nodes. The
double cover corresponding to the divisor cla$sa regular surface of general
type withp, = 1 andc} = 2.

Consider the linear systef2h — R;| onS’. Since(h — R;)? = 2, it defines
adegree 2 map onf#?. Since(2h—R;)-R; = 0,7 > 10, the curvesk;, i # 1,
are blown down to points. The curvg, is mapped to a coni& on the plane.
One can show that the branch curve of the cover is the union of two cubic
curves and the coni&’ is tangent to both of the curves at each intersection
point. Conversely, the double cover of the plane branch along the union of two
cubics which both everywhere tangent to a nonsingular conic, is isomorphic to
a quartic symmetroid (see [146]) We refer to Chapter 1 where we discussed the
Reye varieties associateditedimensional linear systems of quadric&ih. In
the case of the quartic symmetroid parameterizing singular quadrics in a web
of quadrics inP3, the Reye variety is an Enriques surface.

Assumed = 5 andS has expected number 20 of nodes. The linear system
7n consists of curves of genus 11 and degree 10. It nfgsomorphically
onto a surface of degree 101, the Jacobian surface of the web of quadrics
defined by the determinantal representation. The family of contact surfaces
is a 4-dimensional family of quartic surfaces passing through the nodgs of
and touching the surface along some curve of genus 11 and degree 10 passing
through the nodes. The double covErof S branched over the nodes is a
regular surface of general type withy = 4 andc¢? = 10. It is easy to see
that the canonical linear system ohis the preimage of the canonical linear
system onS. This gives an example of a surface of general type such that the
canonical linear system maps the surface onto a canonically embedded normal
surface, a counter-example to Babbage’s conjecture (see [72]).



EXERCISES 205
Exercises

4.1 Find explicitly all equivalence classes of linear determinantal representations of a
nodal or a cuspidal cubic.

4.2 Show that a general binary form admits a unique equivalence class of symmetric
determinantal representations.

4.3 The following problems lead to a symmetric determinantal expression of a plane
rational curve [387].

(i) Show, that, for any two degreé binary formsp(uo, u1) and g(uo,u1), there
exists a uniqué x d symmetric matrixB(p, ¢) = (b;;) whose entries are bilinear
functions of the coefficients gf andgq such that
p(uo, u1)q(vo, v1) —q(uo, ur)p(vo, v1) = (uovr —urvo) Y _ biyugu vjvi 7.

(i) Show that the determinant @ (p, q) (thebezoutianof p, ¢) vanishes if and only
if the two binary forms have a common zero.

(iii) Let po, p1, p2 be three binary forms of degréevithout common zeros and be
the image of the map' — P?, [ug,u1] — [po(uo,u1), p1(uo,u1), p2(uo,u1)].
Show thatC' is given by the equatiorf (¢o, t1,t2) = |B(top1 — tipo,topz —
t2p0)| =0.

(iv) Prove thatf = |toB(p1,p2) — t1B(to, t2) — t2B(to, t1)| and any symmetric
determinantal equation @f is equivalent to this.

4.4Let C = V(f) be a nonsingular plane cubip;, p2, p3 be three non-collinear
points. Let(Ao, A1, A2) define a quadratic Cremona transformation with fundamental
pointsp1, p2, ps. Let q1, g2, g3 be another set of three points such that the six points
p1,P2,P3,q1, g2, g3 are cut out by a conic. LgtBy, B1, B2) define a quadratic Cre-
mona transformation with fundamental poigis g2, g3. Show that

. AOBO AOB1 AOB2
F_J det adj AlBo AlBl A1 BQ
A2 Bo A2B1 A2B2

is a determinantal equation 6f.
4.5Find determinantal equations for a nonsingular quadric surfaBg.in

4.6Let E C Mat, be a linear subspace of dimension 3 of the spaekfd matrices.
Show that the locus of points € PY~! such that there existd € E such thatdz = 0

is defined by(g) equations of degreg In particular, for any determinantal equation of
a curveC, the images of” under the maps : P? — P! and[ : P> — P?! are
defined by such a system of equations.

4.7 Show that the variety of nets of quadricdifi whose discriminant curve is singular
is reducible.

4.8Let C = V(det A) be a linear determinantal representation of a plane caGtve
of degreed defiined by a rank 1 torsion-free she&fof global typer : ¢/ — C.
Show that the rational map: C — P! z — |N(A(z))| extends to a regular map
' — Pl

4.9Let C be a non-hyperelliptic curve of genus 3 and degree®’in

() Show that the homogeneous ideal®fin P* is generated by four cubic polyno-

mials fo, f1, f2, f3.
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(i) Show that the equation of any quartic surface contairfihgan be written in the
form > I; fi = 0, wherel; are linear forms.

(iii) Show that(fo, f1, f2, f3) define a birational mag from P* to P3. The image
of any quartic containing’ is another quartic surface.

(iv) Show that the may is the right kernel map for the determinantal representation
of the quartic defined by the curée.

4.10Show that a curve of degree 6 and genus Binis projectively normal if and only
if it is not hyperelliptic.

4.11 Let C be a nonsingular plane curve of degréeand £, € Pic?~'(C) with
h%(Lo) # 0. Show that the image af' under the map given by the complete linear
systemZy (1) is a singular curve.

4.12 Let 0 be a theta characteristic on a nonsingular plane curve of debreith

h%(#) = 1. Show that the corresponding aCM sheaffndefines an equation af
expressed as the determinant of a symméttie 1) x (d — 1) matrix (a;;(t)), where
ai;(t) are of degreé for 1 < 4,j < d — 3, a1,(t) are of degree 2, an@y_14—1(t) is

of degree 3 [37].

4.13Let.S = V(det A) be alinear determinantal representation of a nonsingular quar-
tic surface irlP®. Show that the fou x 3 minors of the matrix3 obtained fromA by
deleting one row define the equations of a projectively normal curve of degree 6 and
genus 3 lying orf.

4.14 Show that any quartic surfaces containing a line and a rational normal cubic not
intersecting the line admits a determinantal representation.

4.15Show that the Hessian hypersurface of a general cubic hypersurftésihyper-
surface of degree 5 whose singular locus is a curve of degree 20. Show that its general
hyperplane section is a quintic symmetroid surface.

4.16Let C be a curve of degred/(d) = d(d — 1)/2 and arithmetic genu&/(d) =
2(d — 2)(d — 3)(2d + 1) on a smooth surface of degréén P*. Show that the linear
system|Os(—C)(d)| consists of curves of degre®(d + 1) and arithmetic genus
G(d+1).

4.17Let S be a general symmetroid quintic surfacéfihand|L| be the linear system
of projectively normal curves of degree 10 and genus 11 which defines a symmetric
linear determinantal representation®fnd letS’ be the image of under the rational
map® : P* — P = |O¢|”. Let W be the web of quadrics defining the linear
representation of. Consider the rational map : P* --» P* defined by sending
a pointz € P* to the intersection of polar hyperplangs(Q), Q@ € W. Prove the
following assertions (see [621].

(i) The fundamental locus &f (whereT is not defined) is equal t&’.

(i) The image of a general hyperplagis a quartic hypersurfac& .

(iii) The intersection of two such quartics; and X g is equal to the union of the
surfaceS’ and a surfacé” of degree 6.

(iv) Each 4-secant line of contained inH (there are 20 of them) is blown down
underT to 20 nodes ofX .

4.18Let p1, ..., ps be five points ifP® in general linear position. Prove the following
assertions (see [623]).

(i) Show that one can choose a poigf on the linep;p; such that the linepigsa,
D2qas, P3G25, Paq12, P5q23 form a closed space pentagon.
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(i) Show that the union of 5 lineg;p; and 5 lines defined in (i) is a curve of arith-
metic genus 11.

(i) Show that the linear system of quartic surfaces containing the 10 lines Biaps
to a quartic hypersurface IP* with 45 nodes (th®&urhardt quartic threefolj

4.19Show that the equivalence classes of determinantal representations of plane curve
C of degree2k with quadratic forms as entries correspond to aCM sheavés satis-

fying h®(F(—1)) = 0andF(—id — 2) = F(—3(d — 2)).

4.20 Show that the union ofl different hyperplanes if®™ always admits a unique
equivalence class of symmetric linear determinant representations.

Historical Notes

Apparently, O. Hesse was the first who stated clearly the problem of represen-
tation of the equation of a hypersurface as a symmetric determinant of linear
forms [321]. He was able to do it for plane curves of order 4 [322]. He also
showed that it can be done in 36 different ways corresponding 36 families of
contact cubics. For cubic curves the representation follows from the fact that
any cubic curve can be written in three ways as the Hessian curve. This fact
was also proven by Hesse [317], p. 89. The fact that a general plane curve of
degreed can be defined by the determinant of a symmetric d matrix with
entries homogeneous linear forms was first proved by A. Dixon [185]. Dixon’s
result was reproved later by Grace [286]. Modern expositions of Dixon’s the-
ory were given by A. Beauville33] and A. Tyurin [616], [617].

The first definition of non-invertible theta characteristics on a singular curve
was given by W. Barth. It was studied for nodal planes curves by A. Beauville
[33] and F. Catanese [74], and for arbitrary singular curves of degréeby
C.T.C. Wall [646].

It was proved by L. Dickson [182] that any plane curve can be written as
the determinant of not necessarily symmetric matrix with linear homogeneous
forms as its entries. The relationship between linear determinantal represen-
tations of an irreducible plane curve of degréand line bundles of degree
d(d — 1)/2 was first established in [140]. This was later elaborated by V. Vin-
nikov [642]. A deep connection between linear determinantal representations
of real curves and the theory of colligations for pairs of commuting operators
in a Hilbert space was discovered by M.#iif [404] and his school (see [405]).

The theory of linear determinantal representation for cubic surfaces was de-
veloped by L. Cremona [159]. Dickson proves in [182] that a general homoge-
neous form of degreé > 2 in r variables cannot be represented as a linear de-
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terminant unless = 3 orr = 4,d < 3. The fact that a determinantal represen-
tations of quartic surfaces is possible only if the surface contains a projectively
normal curve of genus 3 and degree 6 goes back to F. Schur [553]. However, it
was A. Coble who was the first to understand the reason: by Noether’s theorem,
the Picard group of a general surface of degrekis generated by a plane sec-
tion [133], p. 39. The case of quartic surfaces was studied in detail in a series
of papers of T. Room [520]. Quartic symmetroid surfaces were first studied by
A. Cayley [94]. They appear frequently in algebraic geometry. Coble’s paper
[131] (in a disguised form) the group of birational automorphisms of such sur-
faces. There is a close relationship between quartic symmetroids and Enriques
surfaces (see [146]. M. Arin and D. Mumford [17] used quartic symmetroids
in their celebrated constriction of counter-examples to theth Problem. A
modern theory of symmetroid surfaces can be found in papers of A. Beauville
[37] and F. Catanese [72].

We refer to [37] for a comprehensive survey of modern theory of determi-
nantal representations of hypersurfaces based on the theory of aCM sheaves.
One can find numerous special examples of determinantal representations in
this paper. We followed his exposition in many places.

In classical algebraic geometry, a determinantal representation was consid-
ered as a special case of a projective generation of subvarieties in a projective
space. It seems that the geometric theory of determinantal varieties started from
the work of H. Grassmann in 1856 [290], where he considers the projective
generation of a cubic surface by three collinear nets of planes. Grassmann’s
construction was greatly generalized in a series of papers of T. Reye [510]. In
the last paper of the series he studies curves of degree 10 and genus 11 which
lead to linear determinantal representation of quintic surfaces.

Algebraic theory of determinantal varieties started from the work of F.S.
Macaulay [413], where the fact that the loci of ragkr square matrices are
Cohen-Macaulay varieties can be found. The classical account of the theory of
determinantal varieties is T. Room’s monograph [521]. A modern treatment of
determinantal varieties can be found in modern books [10], [253], [295]. The
book of W. Bruns and U. Vetter [60] gives a rather complete account of the re-
cent development of the algebraic theory of determinantal ideals. The formula
for the dimensions and the degrees of determinantal varieties in general case
of m x n matrices and also symmetric matrices goes back to C. Segre [569]
and Giambelli [269].
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Theta characteristics

5.1 Odd and even theta characteristics

5.1.1 First definitions and examples

We have already dealt with theta characteristics on a plane curves in the previ-
ous Chapter. Here we will study theta characteristics on any nonsingular pro-
jective curve in more details.

It follows from the definition that two theta characteristics, considered as
divisor classes of degreg— 1, differ by a 2-torsion divisor class. Since the
2-torsion subgroup Jac((2] is isomorphic to(Z/27)%9, there are2?9 theta
characteristics. However, in general, there is no canonical identification be-
tween the set TChar(Cof theta characteristics ofif and the set Jac(¥[2].

One can say only that TChar{Gs an affine space over the vector space of
Jac(C)[2] = F2Y.

There is one more structure on TChaj(ldésides being an affine space over
Jac((J[2]. Recall that the subgroup of 2-torsion points Jagolis equipped
with a natural symmetric bilinear form ovék, called theWeil pairing. It is
defined as follows (see [10], Appendix B). Lete’ be two 2-torsion divi-
sor classes. Choose their representative®’ with disjoint supports. Write
div(¢) = 2D,div(¢’) = 2D’ for some rational functiong and ¢’. Then
% = +1. Here, for any rational functiop defined at points;, (>, z;) =
[L; ¢(x;). Now we set

h={y )=

0 otherwise.

Note that the Weil pairing is a symplectic form, i.e. satisfies) = 0. One
can show that it is a nondegenerate symplectic form (see [447]).



210 Theta characteristics

For anyy € TChar(C), define the function
q9 : Jac(O)[2] — Fy, € — h°(9 + €) + h° (V).
The proof of the following Theorem can be found in [10], p. 290).

Theorem 5.1.1(Riemann-Mumford Relation) The functionyy is a quadratic
form onJac(C}[2] whose associated symmetric bilinear form is equal to the
Weil pairing.

Later we shall see that there are two types of quadratic forms associated to
a fixed nondegenerate symplectic form: even and odd. They agree with our
definition of an even and odd theta characteristic. The number of even (odd)
theta characteristics is equal2®—1(29 + 1) (2971(29 — 1)).

An odd theta characteristit is obviously effective, i.ek®(9) > 0. If C'is
a canonical curve, then divisdp € || satisfies the property thatD is cut
out by a hyperplanéf in the spaceK |, whereC' is embedded. Such a hy-
perplane is called eontact hyperplane. It follows from above that a canonical
curve either hag?9—1(29 — 1) contact hyperplanes or infinitely many. The latter
case happens if and only if there exists a theta charactefigtith 2 () > 1.

Such a theta characteristic is callahishing theta characteristic. An example

of a vanishing odd theta characteristic is the divisor class of a line section of a
plane quintic curve. An example of a vanishing even theta characteristic is the
uniqueg} on a canonical curve of genus 4 lying on a singular quadric.

The geometric interpretation of an even theta characteristic is more subtle.
In the previous Chapter we related theta characteristics, both even and odd,
to determinantal representations of plane curves. The only known geometrical
construction related to space curves which | know is the Scorza construction
of a quartic hypersurface associated to a canonical curve and a non-effective
theta characteristic. We will discuss this construction in se&ién

5.1.2 Quadratic forms over a field of characteristic 2

Recall that a quadratic form on a vector sp&tever a fieldK is a mapg :
V — K such thay(av) = a?q(v) for anya € K and anyv € V and the map

by : VxV =K, (v,w)—qv+w)—qv)—qw)

is bilinear (it is called theoolar bilinear form). We havé, (v, v) = 2q(v) for
anyv € V. In particular,qg can be reconstructed frofy if char(K) # 2. In
the case when char(K) = 2, we git(v,v) = 0, henceb, is a symplectic
bilinear form. Two quadratic formg, ¢’ have the same polar bilinear form if
and only ifg — ¢’ = I, wherel(v + w) = I(v) + l(w), [(av) = a*I(v) for any
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v,w € V,a € K. If Kis a finite field of characteristic 2/1 is a linear form on
V', and we obtain

by=by == q=q +0* (5.1)

for a unique linear fornf : V' — K.

Letes,...,e, be abasis il andA = (a;;) = (by(es, €;)) be the matrix
of the bilinear formb,,. It is a symmetric matrix with zeros on the diagonal if
char(K) = 2. It follows from the definition that

Q(Z Tie;) = Zl‘f(I(ei) + Z TiT g
i=1 i=1 1<i<j<n

Therank of a quadratic form is the rank of the mattik of the polar bilinear
form. A quadratic form is calledondegenerat# the rank is equal telim V.
In coordinate-free way this is the rank of the linear map- V'V defined by
b,. The kernel of this map is called thadical of b,. The restriction of; to the
radical is identically zero. The quadratic fograrises from a nondegenerate
guadratic form on the quotient space. In the following we assumegtimat
nondegenerate.

A subspacd. of V is calledsingularif ¢|L = 0. Each singular subspace is
anisotropic subspacevith respect td,, i.e.,b,(v, w) = 0 for anyv,w € E.
The converse is true only if chd) # 2.

Assume char(K) = 2. Sindg, is a nondegenerate symplectic fonmns= 2k,
and there exists a basis, - - - , e, in V such that the matrix df, is equal to

O Ik
= . 5.2
T < o Ok) (5.2)
We call such a basisstandard symplectic basik this basis
n n k
CI(Z zie;) = Z wiqle:) + Z Ty Ttk
1=1 =1 =1
Assume, additionally, tha* = K*2, i.e., each element iK is a square (e.g.

K is a finite or algebraically closed field). Then, we can further reduoghe
form

2k n k
=1 =1 =1
whereq(e;) = o2, i = 1,...,n. This makes§.1) more explicit. Fix a non-

degenerate symplectic forfn) : V x V — K. Each linear function o is
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given by/(v) = (v, n) for a uniquen € V. By (5.1), two quadratic formg, ¢’
with polar bilinear form equal tg, ) satisfy

q(v) = ¢'(v) + (v, n)?

for a uniquen € V. Choose a standard symplectic basis. The quadratic form
defined by

2k k
QO(E Cﬂiei) = E TiTitk
I=1 i=1

has the polar bilinear form equal to the standard symplectic form. Any other
form with the same polar bilinear form is defined by

Q(U) = q()(v) + <U777q>27

where

2k
= Z Va(eiei.
i=1

From now onK = Fy, the field of two elements. In this cagé = « for any
a € Fy. Formula (5.1) shows that the £gV") of quadratic forms associated to
the standard symplectic form is an affine space &vaith additiong+n, g €
Q((V),n € V, defined by

(g +n)(v) = qv) + (v,n) = q(v+mn) +q(n). (5.4)
The number
k
Arf(q) = qlei)q(eirr) (5.5)
=1

is called theArf invariant of ¢. One can show that it is independent of the
choice of a standard symplectic basis (see [296], Proposition 1.11). A quadratic
form ¢ € Q(V) is calledeven(resp.odd) if Arf(¢) = 0 (resp. Arf(g = 1).

If we choose a standard symplectic basis fprand writeq in the form
qo + 14, then we obtain

k

Arf(q) = ok = qo(ng) = q(ng)- (5.6)
=1

In particular, if¢’ = ¢ +v = qo + 14 + v,

Arf(q") + Arf(q) = qo(ng +v) + qo(1g) = qo(v) + (v, ) = q(v). (5.7)
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It follows from (5.6) that the number of even (resp. odd) quadratic forms is
equal to the cardinality of the sgf ' (0) (resp.q; *(1)). We have

4o 1 (0)] = 2" (25 + 1), g (1) =2"1(2" — D). (5.8)

This is easy to prove by using induction bn
Let Sp(V) be the group of linear automorphisms of the symplectic space
If we choose a standard symplectic basis then

Sp(V) = Sp(2k,Fy) = {X € GL(2k)(Fs) : ' X - Jy - X = Ji.}.
It is easy to see by induction dnthat
ISp(2k Fo)| = 2¥ (2% —1)(2* 72— 1) (22— 1), (5.9)

The group Sp(V has 2 orbits inQ(V), the set of even and the set of odd
guadratic forms. An even quadratic form is equivalent to the fgsrand an
odd quadratic form is equivalent to the form

q1 = qo t+ ex + ez,

where(ey, ..., es;) is the standard symplectic basis. Explicitly,

k

2k
_ 2 2
a1 ( g xie;) = g TiTivk + Ty + 5.
i—1 i=1

The stabilizer subgroup Sp(V* (resp. Sp(1J~) of an even quadratic form
(resp. an odd quadratic form) is a subgroup of Bpof index 2+~ (2% +
1) (resp.2*=1(2% — 1)). If V = F2%* with the symplectic form defined by
the matrix.J;, then Sp(VJ* (resp. Sp(VJ~) is denoted by O(24F,)™ (resp.
O(2k,F2)7).

5.2 Hyperelliptic curves

5.2.1 Equations of hyperelliptic curves

Let us first describe explicitly theta characteristics on hyperelliptic curves. Re-
call that a hyperelliptic curve of genuysis a nonsingular projective cun&g

of genusg > 1 admitting a degree 2 map: C — P!. By Hurwitz's formula,
there are€2g + 2 branch point®, ..., pag+2 in PL. Let fo,10(to, t1) be a bi-
nary form of degre@g + 2 whose zeros are the branch points. The equation of
C' in the weighted projective plari®(1,1,¢g + 1) is

t5 + fagra(to,t1) = 0. (5.10)
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Recall that a weighted projective spa@gy) = P(qo, - - -, ¢») is defined as the
quotient ofC™*1 \ {0}/C*, whereC* acts by

t:[20,-..,2n) — [tP20,...,t12,].
A more general definition dP(q) which works ovetZ is
P(q) = ProjZ[Tv, ..., Tnl,

where the grading is defined by settide 7; = ¢;. Hereq = (qo, . .., g,) are
integers> 1. We refer to [191] or [345] for the theory of weighted projective
spaces and their subvarieties. Note that a hypersurfaBéghpis defined by

a homogeneous polynomial where the unknowns are homogeneous of degree
¢;- Thus equation (5.10) defines a hypersurface of degyyee2. Although, in
generalP(q) is a singular variety, it admits a canonical sheaf

wr(q) = Op(q)(—lal),

where|q| = ¢o+- - - +¢x. Here the Serre sheaves are understood in the sense of
theory of projective spectrums of graded algebras. There is also the adjunction
formula for a hypersurfac& C P(q) of degreed

WXZOX(d—‘qD. (511)
In the case of a hyperelliptic curve, we have
we = Oc(g - 1).

The morphismp : C — P! corresponds to the projectidty, t1, ta] — [to, 1]
and we obtain that

woe =@ Opi(g—1).

The weighted projective spad¥1, 1,9 + 1) is isomorphic to the projective
cone inP9™2 over the Veronese curve,;1(P') c P91 The hyperelliptic
curve is isomorphic to the intersection of this cone and a quadric hypersurface
in P9+ not passing through the vertex of the cone. The projection from the
vertex to the Veronese curve is the double caverC — P!. The canonical
linear system K| mapsC' to P9 with the image equal to the Veronese curve
Ug_l(]Pl).

5.2.2 2-torsion points on a hyperelliptic curve

Let ¢1, ..., coq+2 be the ramification points of the map We assume that
©(c;) = p;. Obviously,2¢; — 2¢; ~ 0, hence the divisor class of — ¢; is of
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order 2 in Pic((. Also, for any subsei of the setB, = {1,...,2g + 2}, we
have

ar = Zci — #lcogio = Z(Ci — C2g42) € Pic(C)[2].

iel i€l

Now observe that

ap, = Z i — (29 + 2)cag42 = div(¢) ~ 0, (5.12)

where¢ = to/(bty — at1)9+1 andpag42 = (a,b) (we consider the fraction
modulo equation (5.10) defining). Thus

Gimcp~2+ Y r— (204 2)cag42 ~ A\ fi )
kEB,\(j}

Adding to«; the zero divisokag 2 — cog12, We can always assume thits
is even. Also adding the principal divisais, , we obtain thaty; = o, where
I denotesB, \ I.

LetF,* = F29+2 pe theF,-vector space of functionB, — F,, or, equiva-
lently, subsets oB,,. The sum is defined by the symmetric sum of subsets

I+J=IuJ\({INnJ).

The subsets of even cardinality form a hyperplane. It contains the siitzseds

B, as a subspace of dimension 1. It denote the quotient space. Elements

of E, are represented by subsets of even cardinality up to the complementary
set (bifid maps$n terminology of A. Cayley). We have

E, =T,
hence the correspondente- «; defines an isomorphism
E, = Pic(C)[2]. (5.13)
Note thatF, carries a natural symmetric bilinear form
e:Eyx Eg — Ty, e(,J)=#INJ mod 2. (5.14)

This form is symplectic (i.ee(Z,I) = 0 for any I) and nondegenerate. The
subsets

A;={2i—1,2i}, B;={2i,2i+1}, i=1,...,g, (5.15)

form a standard symplectic basis.
Under isomorphism (5.13), this bilinear form corresponds to the Weil pair-
ing on 2-torsion points of the Jacobian varietyCaf
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Remark5.2.1 The symmetric grou@,,42 acts onk, via its action on,
and preserves the symplectic formThis defines a homomorphism

sg: Gagy2 — SP(2g,F2).

If g =1, Sp(2,F2) = &3, and the homomorphissy has the kernel isomor-
phic to the grougZ/27)2. If g = 2, the homomorphism, is an isomorphism.
If g > 2, the homomorphisr, is injective but not surjective.

5.2.3 Theta characteristics on a hyperelliptic curve
For any subsel’ of B, set
Or = Zci + (9 —1—=#Tcog12) = ar + (g — 1)cag42.
€T
We have
2197“ ~ 20£T + (2_9 — 2)ng+2 ~ (2_9 — 2)ng+2.
It follows from the proof of the Hurwitz formula that
KC = @*(Kpl) + Z C;.
i€By
Choose a representative Bf: equal to—2p,,4» and use (5.12) to obtain
KC ~ (29 — 2)ng+2.

This shows that}r is a theta characteristic. Again adding and subtracting
Cag+2 We may assume thatT = g + 1 mod 2. SinceT andT define the
same theta characteristic, we will consider the subsets up to taking the com-
plementary set. We obtain a g which has a natural structure of an affine
space ovetr,, the addition is defined by

Or 4+ ar =741

Thus all theta characteristics are uniquely represented by the divisor classes
Y7, whereT' € Q,.

An example of an affine space oviér= Iﬁ‘g-" is the space of quadratic forms
q: Fgg — F, whose associated symmetric bilinear fasprcoincides with the
standard symplectic form defined by (5.2). We identifyvith its dualV" by
means obg and sey + [ = ¢ + [* foranyl € VV.

For anyT" € Q,, we define the quadratic forgy on £, by

ar(I) = 3(# (T + 1) —#T) = #T N1+ 341 = 2#1 +e(I,T) mod 2.



5.2 Hyperelliptic curves 217

We have (all equalities are modulo 2)
qar(I +J)+qr(I) +qr(J)

=LH#HUT+ D)+ #I+#I)+e(I+J,T)+e(I,T)+e(J,T)=#INJ.

Thus each theta characteristic can be identified with an element of the space
Qg = Q(E,) of quadratic forms otE, with polar forme.
Also notice that

(ar +an)(J) = qr(J) +e(l,J) = 3#J +e(T,J) + (1, J)

=3#J +e(T+1,J) = qr1(J).

Lemma5.2.1 Letyr be atheta characteristic on a hyperelliptic curgeof
genusy identified with a quadratic form of;. Then the following properties
are equivalent:

() #T =g+ 1 mod 4;
(i) R°(W7) =0 mod 2;
(iii) g7 iseven.

Proof Without loss of generality, we may assume thaj, - is the point
(0,1) at infinity in P*. Then the field of rational functions af is generated
by the functiong = t5/ty andz = t1 /tg. We have

I = ci+(g—1—#T)cagra~ (9 — 1+ #T)cagp2 — Y ci.
€T €T
Any function ¢ from the spacd.(dr) = {¢ : div(¢) + 9 > 0} has a unique
pole atcyg4o Of order < 2g + 1. Since the functiory has a pole of order
29 + 1 atcag42, We see thatr = ¢*(p(z)), wherep(z) is a polynomial of
degree< %(g — 14 #T) in z. ThusL(d¥) is isomorphic to the linear space
of polynomialsp(z) of degree< 1 (g — 1 + #T) with zeros ap;, i € T. The
dimension of this space is equal%()g+ 1—+#T). This proves the equivalence
of (i) and (ii).
Let

U={1,3,...,29+1} C B, (5.16)

be the subset of odd numbersity. If we take the standard symplectic basis
in £, defined in (5.15), then we obtain that = g is the standard quadratic
form associated to the standard symplectic basis. It follows from (5.6)that
is an even quadratic form if and only T = U + I, whereqy (I) = 0. Let

I consists oft even numbers anglodd numbers. Thegy (I) = #U NI +
I#I=m+L(k+m) =0 mod 2. Thus#7T = #(U + S) = #U + #I —
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2#UNS = (g+1)+ (k+m)—2m = g+ 14k —m. Thenm + & (k + m)
is even, henc8m + k£ = 0 mod 4. This implies thatt — m =0 mod 4 and
#T = g+ 1 mod 4. Conversely, ifAT = g+ 1 mod 4, thenk —m =0
mod 4 andqy (I) = 0. This proves the assertion. O

5.2.4 Families of curves with odd or even theta characteristic

Let X — S be a smooth projective morphism whose fibfgover a points €
S'is a curve of genug > 0 over the residue fielé(s) of s. LetPick s — S
be therelative Picard schemef X'/S. It represents the sheaf &tale topol-
ogy on.S associated to the functor on the categorySe$chemes defined by
assigning to &5-schemel” the group Pi¢(X x g T') of isomorphism classes
of invertible sheaves oiX x g T of relative degree: overT" modulo tensor
product with invertible sheaves coming fréh TheS—schemePic’;{/S — S
is a smooth projective scheme overlts fibre over a point € S is isomor-
phic to the Picard varietPick, ., over the fieldx(s). The relative Picard
scheme comes with a universal invertible siiéain X' x g Pic’}(/s (locally in
étale topology). For any point € Pic;}/s over a points € S, the restriction
of U to the fibre of the second projection ovgis an invertible sheaf, on
X, ®,(s) k(y) representing a point in Pi¢X, ® x(y)) defined byy.

For any integern, raising a relative invertible sheaf inte-th power defines
a morphism

Takingn = 2¢g — 2 andm = 2, the preimage of the section defined by the
relative canonical classy s is a closed subscheme Bﬁcg;/ls. It defines a
finite cover

TCX/S — S

of degree2?9. The pull-back of/ to TCx /s defines an invertible sheaf
overP = X x5 TCx/s satisfying 7®? = Wp/TCx s BY @ theorem of
Mumford [447], the parity of a theta characteristic is preserved in an algebraic
family, thus the functior7 Cx,s — Z/2Z defined byy — dim H°(Uy, T,)
mod 2 is constant on each connected componeft@y; 5. LetTC‘j}’/S (resp.
TC???S) be the closed subset @1C y /s, where this function takes the valQe
(resp. 1). The projectioC5/, ¢ — S (resp.7C% s — S) is a finite cover of
degree29—1(29 + 1) (resp.2971(29 — 1)).
It follows from above tha C x5 has at least two connected components.
Now takeS = |Op2(d)|™ to be the space of nonsingular plane curges
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of degreed and X — |Opz(d)|™ be the universal family of curves defined by
{(z,C) : x € C}. We set

TCy=TCxys, TCT "= TCT/S",

The proof of the following Proposition can be found in [34].

Proposition 5.2.2 If d is even ord = 3, 7C, consists of two irreducible
componentsT C” and 7C™. If d = 1 mod 4, then7C’ is irreducible

but 7¢5% has two irreducible components, one of which is the section of
TCyq — |Op2(d)| defined byDp:((d — 3)/2). If d = 3 mod 4, thenT 5™

is irreducible but7CS’ has two irreducible components, one of which is the
section of7C4 — |Op2(d)| defined byOp:((d — 3)/2).

Let 7CY be the open subset GTCS’ corresponding to the paif€, 9) with
RO (¥9) = 0. It follows from the theory of symmetric determinantal represen-
tations of plane curves thgiC)/PGL(3)is an irreducible variety covered by
an open subset of a Grassmannian. Since the algebraic group PGIkc(#)-
nected and acts freely on a Zariski open subs&t@}, we obtain thaZ C!) is
irreducible. It follows from the previous Proposition that

TCH=7C% ifd#3 mod 4. (5.17)

Note that there exist coarse moduli spaef§® and/\/t"dd of curves of genus
g together with an even (odd) theta characteristic. We refer to [144] for the
proof of irreducibility of these varieties and for construction of a certain com-
pactifications of these spaces.

5.3 Theta functions

5.3.1 Jacobian variety

Recall the classical definition of the Jacobian variety of a nonsingular pro-
jective curveC' of genusg over C. We considelC as a compact oriented 2-
dimensional manifold of genus We view the linear spacl’(C, K¢) as the
space of holomorphic 1-forms @i By integration over 1-dimensional cycles,
we get a homomorphism @&-modules

v Hi(C,Z) — H°(C,Ko)*, (y)(w) = /w.
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The image of this map is a lattice of rank2g in H°(C, K¢)". The quotient
by this lattice

Jac(Q) = H(C, K¢)Y /A

is a complexg-dimensional torus. It is called thklacobian varietyof C.
Recall that the cap product

N: H(C,Z) x H\(C,Z) — Hy(C,Z) = Z

defines a nondegenerate symplectic form on grélypC, Z) = 729 with a
nondegenerate symplectic form. ke, ... , oy, 51, . . ., B4 be a standard sym-
plectic basis. We choose a basis . . . ,w, of holomorphic 1-differentials on
C such that

/ wj; = 513 (518)
Qg
Let
Tl‘j = / Wi .
The complex matrix = (7;;) is called theperiod matrix. The basis, . . ., wq

identifies H°(C, K¢)V with C9 and the period matrix identifies the lattide
with the latticeA, = [r I,]Z29, where[r I,] denotes the block-matrix of size
g X 2g. The period matrix- = R(7) + /—13(7) satisfies

fr=71 S(r)>0.

As is well-known (see [295]) this implies that Jac(& a projective algebraic
group, i.e. an abelian variety. It is isomorphic to the Picard sckﬁm%/(c.

We consider any divisab = > n,x onC as a 0-cycle od'. The divisors of
degred) are boundaries, i.2 = 0+ for somel-chaing. By integrating ovep
we get a linear function ol °(C, K ) whose coset modulé = «(H,(C,Z))
does not depend on the choice®fThis defines a homomorphism of groups
p : DiV’(C) — Jac(C). The Abel-Jacobi Theorerasserts thap is zero on
principal divisors (Abel's part), and surjective (Jacobi’s part). This defines an
isomorphism of abelian groups

a: Pid(C) — Jac(C) (5.19)
which is called theAbel-Jacobi map. For any positive integétet Pid’l(C)

denote the set of divisor classes of degie@he group Pig(C) acts simply
transitively on Pi€(C') via addition of divisors. There is a canonical map

ug : C'9 — Picd(C), D — [D),
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where we identify the symmetric product with the set of effective divisors of
degreed. One can show that Pi¢C)) can be equipped with a structure of a
projective algebraic variety (isomorphic to the Picard sch@ri%/c) such
that the mapu, is @ morphism of algebraic varieties. Its fibres are projective
spaces, the complete linear systems corresponding to the divisor classes of
degreed. The action of Pi¢(C) = Jac(() on Pi¢!(C) is an algebraic action
equipping Pié(C) with a structure of a torsor over the Jacobian variety.

Let

Wy, ={[D] € PicZ"1(C) : h°(D) > r +1}.

In particular,V[/g?_1 was denoted by in Theorem4.1.3, where we showed
that the invertible sheave, € Pic? ' (C) defining a determinantal equation
of a plane curve of genugbelong to the set Pic*(C) \ WJ_,. The funda-
mental property of the loci;_, is given by the followingRiemann-Kempf
Theorem.

Theorem 5.3.1
Wi ={z € ngl : mul'[gCW;l1 >r+1}.
Heremult, denote the multiplicity of a hypersurface at the paint

In particular, we get
ng—l = Sing(Wf_l)-

From now on we will identify Pi€(C') with the set of points on the Jacobian
variety Jac(( by means of the Abel-Jacobi map. For any theta characteristic
) the subset

© =W, , -9 cJac(Q
is a hypersurface in Jac(|Clt has the property that
h'©) =1, [-1]*(©) =6, (5.20)

where[m] is the multiplication by an integer. in the group variety Jac({”
Conversely, any divisor on Jac|&atisfying these properties is equal/tff,1
translated by a theta characteristic. This follows from the fact that a diisor
on an abelian varietyl satisfyingh®(D) = 1 defines a bijective mag —
Pic’(A) by sending a point: € A to the divisort:D — D, wheret, is the
translation ma@ — a + 2 in the group variety, and PI¢A) is the group of
divisor classes algebraically equivalent to zero. This fact implies that any two
divisors satisfying propertie$(20) differ by translation by a 2-torsion point.

We call a divisor satisfying (5.20) symmetric theta divisorAn abelian
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variety that contains such a divisor is callegh@ncipally polarized abelian
variety.
Leto = Wg 1 — 0 be a symmetric theta divisor on Jac|.Applying The-

orem5.3.1we obtain that, for any 2-torsion poiate Jac(Cj, we have
mult.© = h°(9 + ). (5.21)

In particular,e € © if and only if 8 + ¢ is an effective theta characteristic.
According to, the symmetric theta divisors are divided into two groups: even
and odd theta divisors.

5.3.2 Theta functions

The preimage oP under the quotient map JacjGC= HY(C, Kc)*/A is a
hypersurface in the complex linear space= H°(C, K¢)* equal to the zero
set of some holomorphic functiagh: V' — C. This functiong is not invariant
with respect to translations hy. However, it has the property that, for any
v € V and anyy € A,

o(v+7) = ey(v)P(v), (5.22)

wheree, is an invertible holomorphic function oii. A holomorphic function

¢ satisfying (5.22) is called theta functiorwith theta factor{e., }. The set of
zeros of¢ does not change if we replagewith ¢a, wherecx is an invertible
holomorphic function ori”. The functione.,(v) will change into the function
ey (v) = ey (v)p(v + 7)1 (v). One can show that, after choosing an appro-
priatec, one may assume that

ey(v) = exp(2mi(ay (v) + b4)),

wherea,, is a linear function and,, is a constant (see [446], Chapter§l).
We will assume that such a choice has been made.

It turns out that the theta function corresponding to a symmetric theta divisor
O from (5.20) can be given in coordinates defined by a choice of a normalized
basis (5.18) by the following expression

0[n](z;7)= Z exp m'[(r+%e)~7-(r+%e)—|—2(z+%n)-(r—i—%é)}, (5.23)
rez9
wheree, n € {0,1}¢ considered as a column or a raw vector fréth The
function defined by this expression is callethata function with characteris-
tic. The theta factoey (z1, . . ., z,) for such a function is given by the expres-
sion

ey(z) =exp—mi(m-7-m—2z-m—€-n+7n-m),
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where we writey = 7 - m + n for somem, n € Z9. One can check that
0[n](—2:7) = exp(mie - 1)0 5] (z; 7). (5.24)

This shows that [ ;] (—z;7) is an odd (resp. even) function if and only if
€-n = 1 (resp. 0). In particulard [ ] (0;7) = 0 if the function is odd. It
follows from (5.21) tha¥) [ ;,] (0; 7) = 0 if ¢ is an odd theta characteristic or
an effective even theta characteristic.

Takinge, n = 0, we obtain theRiemann!theta function

0(z;7) = Z expmi(r-7-r+2z-r).
rez9
All other theta functions with characteristic are obtained fréfm; ) by a
translate

0[n)(z;7) =exprmi(e-n+e-7-€)0(z+ %T"I’]+ %6;7’).

In this way points orC¢ of the form%T -e+ %TI are identified with elements
of the 2-torsion groug A /A of Jac(C). The theta divisor corresponding to the
Riemann theta function is equal Wgo,l translated by a certain theta charac-
teristicx called theRiemann constanOf course, there is no any distinguished
theta characteristic, the definition efdepends on the choice of a symplectic
basis inH, (C, Z).

The multiplicity m of a point on a theta diviso®p = Wgo,1 — ¢ is equal
to the multiplicity of the corresponding theta function defined by vanishing
partial derivatives up to orden — 1. Thus the quadratic form defined Byan
be redefined in terms of the corresponding theta function as

ao(br- € + ') = muiod [ €57 ] (2.7) + muloB [5] (z.7).

It follows from (5.24) that this number is equal to

en+n-n'+n-n. (5.25)
A choice of a symplectic basis ii; (C, Z) defines a standard symplectic basis
in H,(C,Fy) = 1A/A = Jac(Q[2]. Thus we can identify 2-torsion points
1

i1 € + in’ with vectors(e’,ny’) € Fgg. The quadratic form corresponding

to the Riemann theta function is the standard one

/ /

q((e',n") =¢€-n'.

The quadratic form corresponding fd ;] (z; 7) is given by (5.25). The Arf
invariant of this quadratic form is equal to

Arf(gy) =€ n.
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5.3.3 Hyperelliptic curves again

In this case we can compute the Riemann constant explicitly. Recall that we
identify 2-torsion points with subsets of even cardinality of the Bgt =
{1,...,2g + 2} which we can identify with the set of ramification or branch
points. Let us define a standard symplectic basis by choosing the 1-cycle

«; to be the path which goes from; 1 to c5; along one sheet of the Riemann
surfaceC' and returns ta,;_; along the other sheet. Similarly, we define the
1-cycle; by choosing the points,; andcy; 1. Choosey holomorphic forms

w; normalized by the condition (5.18). Letbe the corresponding period ma-
trix. Notice that each holomorphit-form changes sign when we switch the
sheets. This gives

L C2i C2g+42 C2g+42
g 1 R R C .
5511—2/%—/ WJ—/ Wi / Wi
a; C2i—1 C2i—1 C2;4
C2g+42 C2g+4-2 C2g+4-2
= / Wj —+ / wj — 2/ wj.
C2i—1 C24 Cc24

i i

C2g+2 C2g+2
2(/ Wiy 7/ wg) = a(202i — 2629+2) = 0,

C24 C24

Since

we obtain

1
t(c2i—1 + c2i — 2c2g42) = 5€; mod A,

where, as usuak; denotes the-th unit vector. LetA;, B; be defined as in
(5.15). We obtain that

a(aa,) = 3e; mod A,.
Similarly, we find that
a(ap,) = 37-€; mod A,.

Now we can match the s€}, with the set of theta functions with characteris-
tics. Recall that the séf = {1,3,...,2¢g + 1} plays the role of the standard
quadratic form. We have

qu(A) =qu(B;) =0, i=1,...,9.

Comparing it with (5.25), we see that the theta functidf,] (z; 7) corre-
sponding tay; must coincide with the functiof(z; 7). This shows that

Lg2212 (19U) = leogio (ﬂU - k62g+2) = 0.
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Thus the Riemann constantcorresponds to the theta characterigtic This
allows one to match theta characteristics with theta functions with theta char-
acteristics.

Write any subsef of £, in the form

g g
I= ZQ’Ai + ZmBzy
i=1

i=1
wheree = (e1,...,¢4), 7= (m,-..,n,y) are binary vectors. Then
Yusr < 0[] (z;7).
In particular,
Yuyr € TChar(O® <= €e-n=0 mod 2.

Example5.3.1 We give the list of theta characteristics for small genus. We
also list 2-torsion points at which the corresponding theta function vanishes.

g=1
3 even “thetas”:

191229[(1)] (0412)7
Vi3 =0[3] (u3),

D1a = 0[] (14).
1 odd theta

Ug=0[1] (o)

g=2

10 even thetas:
P123 :9[%] (0412701237041370445,0446;0456)7
V124 = 0[9] (a2, @24, @14, i35, 36, Q56)
V125 = 0[99] (a2, s, a1s, (34, 136, u46),
V126 = 0[11] (12,16, 26, (i34, 35, 45),
Vo34 =0 [(1)(1)] (0423,01347 Qg4, 015, (56, Cms),

Vo35 = 0[89] (23, azs, g5, 014, 16, Quag) s
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Yaze = 098] (a3, 6, 36, 14, a5, 15),
Vous = O [35] (024, a2s, 13, ous, g, i3g) s
Uoa6 = 093] (a6, @24, 13, i35, g, Q15),

Vo5 = 0 [8(1)] (0426701257 13, 014, (34, 0456)~

6 odd thetas
U1 =10 [8%] (Oé@, 12,013, X14, X15, alﬁ)a
Uy = 9[(1)%] (Oév),0412,0423,0424,00570426),
U3 =01 (o, on3, o3, asa, s, ase),
Uy =0[18] (ap, a1, g, aza, 0us, ae),
U5 =019 (ag, o5, a5, us, @25, as6),
96 =0[91] (g, 16, @26, 36, Cag, i56).

g=3

36 even thetady, U5,
28 odd thetay,;;.

g=4
136 even thetas;, ¥;;xim
120 odd theta$, .

5.4 Odd theta characteristics
5.4.1 Syzygetic triads

We have already remarked that effective theta characteristics on a canonical
curveC C P9~ correspond to hyperplanes everywhere tangeat.td/e calll
thembitangent hyperplanefot to be confused with hyperplanes tangent at
> 2 points).

An odd theta characteristic is effective and determines a bitangent hyper-
plane, a unique one if it is non-vanishing. In this section we will study the
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configuration of bitangent hyperplanes to a canonical curve. Let us note here
that a general canonical curve is determined uniquely by the configuration of
its bitangent hyperplanes [66].

From now on we fix a nondegenerate symplectic sg&te) of dimension
2g overFs. Let Q(V) be the affine space of quadratic forms with associated
symmetric bilinear form equal to. The Arf invariant divides) (V) into the
union of two setx) (V) andQ(V')_, of even or odd quadratic forms. Recall
that Q(V')_ is interpreted as the set of odd theta characteristics When
Pic(C) andw is the Weil pairing. For any € Q(V') andv € V, we have

q(v) = Arf(q + v) + Arf(q).

Thus the function Arf is a symplectic analog of the functidh(¥) mod 2
for theta characteristics.

The setV = V][ Q(V) is equipped with a structure of A/2Z-graded
vector space overs,. It combines the addition ol (the 0-th graded piece)
and the structure of an affine space®(V”) (the 1-th graded piece) by setting
q+ ¢ := v, whereq’ = ¢ + v. One can also extend the symplectic formion
to V by setting

w(g,q") =qlqg+q'), wlg,v)=w(v,q)=qv).

Definition 5.4.1 A set of three elemends, ¢, g3 In Q(V) is called asyzygetic
triad (resp.azygetic triad) if

Arf(qq) + Arf(qs) + Arf(gs) + Arf(g1 + g2 + ¢3) = 0 (resp. = 1).

A subset of: > 3 elements irQ (V) is called anazygetic setf any subset of
three elements is azygetic.

Note that a syzygetic triad defines a set of four quadricg(ii7) that add up
to zero. Such a set is calledsgizygetic tetradObviously, any subset of three
elements in a syzygetic tetrad is a syzygetic triad.

Another observation is that three elementgifl) _ form an azygetic triad
if their sum is an element i@(V) ..

For any odd theta characteristicany divisorD,, € || is of degreey — 1.
The condition that four odd theta characteristitsform a syzygetic tetrad
means that the sum of divisor3y, are cut out by a quadric i*9~!. The
converse is true i€’ does not have vanishing even theta characteristic.

Let us now compute the number of syzygetic tetrads.

Lemmab5.4.1 Letq, g2, g3 be a set of three elemenst@iV'). The following
properties are equivalent:
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() q1,qo,qs is a syzygetic triad;
(i) q1(q2 + g3) = Arf(g2) + Arf(g3);
(i) w(q1 +q2,q1 +gq3) = 0.

Proof The equivalence of (i) and (ii) follows immediately from the identity

q1(q2 + q3) = Arf(q1) + Arf(q1 + g2 + g3).

We have
wlan + a2, 01 +a3) = q1(q1 + g3) + q2(q1 + q3)
= Arf(ql) + Arf(Q3) + Arf(qg) + Arf(q1 +q2 + Q3)
This shows the equivalence of (ii) and (iii). O

Proposition 5.4.2 Letq;,q2 € Q(V)—_. The number of ways in which the
pair can be extended to a syzygetic triad of odd theta characteristics is equal
t02(2971 +1)(2972 — 1).

Proof Assume thaty, g2, g3 is a syzygetic triad irQ (V') _. By the previous
lemma,g (g2 + g3) = 0. Also, we havey (gz + g3) = Arf(gs) + Arf(gy) = 0.
Thusg¢; andgs vanish atvg = g2 + g3. Conversely, assume € V' satisfies
q1(v) = q2(v) = 0 andv # q1 + g2 so thatgs = g2 + v # q1,q2. We
have Arf(g) = Arf(q2) + ¢g2(v) = 1, hencegs € Q(V)_. Sinceq;(v) =
q1(q2 + g3) = 0, by the previous Lemmay, ¢2, g3 is a syzygetic triad.

Thus the number of the ways in which we can extend; to a syzygetic
triad ¢1, ¢2, g3 is equal to the cardinality of the set

Z = Ch_l(o) N Q2_1(0) \ {07U0}7

wherevg = ¢1 + ¢1. It follows from (5.6) thatv € Z satisfiesw(v,vy) =
g2(v) + ¢1(v) = 0. Thus anyv € Z is a representative of a nonzero element
in W = v /v = F29" on whichg, andg, vanish. Itis clear thag; andgs,
induce the same quadratic forgron . It is an odd quadratic form. Indeed,
we can choose a symplectic basislinby taking as a first vector the vector
vg. Then computing the Arf invariant af, we see that it is equal to the Arf
invariant of the quadratic form. Thus we get

H#7 = 2(#Q(W), — 1) = 2(29—2(2g—1 _ 1) _ 1) — 2(2g—1 + 1)(2g_2 _ 1).
[

Corollary 5.4.3 Lett, be the the number of syzygetic tetrads of odd theta
characteristics on a nonsingular curve of genudhen

1
ty = 529*3(229 —1)(22972 —1)(2972 - 1).
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Proof Let I be the set of triple$q;, g2, T'), wheregq;, go € Q(V)_ andT is

a syzygetic tetrad containing, go. We count#1 in two ways by projecting
I to the setP of unordered pairs of distinct elemerifgV’)_ and to the set of
syzygetic tetrads. Since each tetrad contéipsirs from the seP, and each
pair can be extended {29! + 1)(29-2 — 1) ways to a syzygetic tetrad, we
get

9=1(99__
#I= (207" + )7 =) §Y) =6ty
This gives
1, .
ty = g29*3(229 —1)(22972 —1)(2972 - 1).
O

LetV be a vector space with a symplectic or symmetric bilinear form. Recall
that a linear subspadeis called isotropic if the restriction of the bilinear form
to L is identically zero.

Corollary 5.4.4 Let {q1, ¢2,q3,q4} be a syzygetic tetrad i)(V')_. Then
P ={q +qi,...,q4 + ¢;} is an isotropic 2-dimensional subspace(if, w)
which does not depend on the choiceyof

Proof It follows from Lemma5.4.1(iii) that P is an isotropic subspace. The
equalityg; + - - - + g4 = 0 gives
T+ @ =g + gj, (5.26)

where{i, j, k, 1} = {1,2,3,4}. This shows that the subspafeof V' formed
by the vectorsy; 4+ ¢;,7 = 1,...,4, is independent on the choice ©fOne of
its bases is the séf; + g4, g2 + q4). O

5.4.2 Steiner complexes

Let P be the set of unordered pairs of distinct elementg3(#)_. The addition
map inQ(V)_ x Q(V) — V defines a map

s: P —V\{0}.
Definition 5.4.2 The union of pairs from the same fibre! (v) of the maps

is called aSteiner compex. It is denoted By v).

It follows from (5.26) that any two pairs from a syzygetic tetrad belong to
the same Steiner complex. Conversely{lgt, ¢} }, {42, ¢5} be two pairs from
%(v). We have(q: + q1) + (g2 + ¢5) = v + v = 0, showing that the tetrad
(1,491, 42, 43) is syzygetic.
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Proposition 5.4.5 There are229 —1 Steiner complexes. Each Steiner complex
consists oR2971(2971 — 1) elements paired by translatian— ¢ + v. An odd
quadratic formg belongs to a Steiner compl&Xv) if and only if¢(v) = 0.

Proof Since229 — 1 = #(V \ {0}), it suffices to show that the map:
P — V'\ {0} is surjective. The symplectic group Sp(V}, acts transitively on
V'\ {0} and onP, and the map is obviously equivariant. Thus its image is a
non-emptyG-invariant subset of \ {0}. It must coincide with the whole set.
By (5.7), we havey(v) = Arf(q +v) + Arf(q). If ¢ € £(v), theng+ v €
Q(V)_, hence Arf(¢+ v) = Arf(q) = 1 and we gety(v) = 0. Conversely, if
q(v) = 0andq € X(v), we getqg + v € Q(V)_ and hence; € X(v). This
proves the last assertion. O

Lemma5.4.6 LetX(v),%(v') be two Steiner complexes. Then

29712972 — 1) if w(v,v') =0,

#E(v) NEQ) = {292(291 —1) ifw(v,v') #0.

Proof Letq € X(v)NX(v'). Then we have + ¢ = v, ¢+ ¢” = v’ for some
¢ € X(v),q" € (v'). This implies that

q(v) = q(v') = 0. (5.27)

Conversely, if these equalities hold, thes v, g +v" € Q(V)_, ¢, ¢ € X(v),
andq,q” € X(v"). Thus we have reduced our problem to linear algebra. We
want to show that the number of elementgji/) _ which vanish at 2 nonzero
vectorsv,v’ € V is equal to2971(2972 — 1) or 29-2(29~1 — 1) depending

on whethew(v,v") = 0 or 1. Letq be one such quadratic form. Suppose we
have anotheg’ with this property. Writey’ = ¢ + vy for somev,. We have
q(vp) = 0 sinceq’ is odd and

w(vg,v) = w(vg,v’) = 0.

Let L be the plane spanned byv’. Assumeuv(v, v') = 1, then we can include
v, v’ in a standard symplectic basis. Computing the Arf invariant, we find that
the restriction of; to L+ is an odd quadratic form. Thus it hag=2(29-! — 1)
zeros. Each zero gives us a solution fgr Assumew(v,v’) = 0. ThenL
is a singular plane fog sinceq(v) = ¢(v') = ¢(v +v’) = 0. Consider
W = L‘/L = F29~*. The formq has2973(29-2 — 1) zeros inW. Any
representative, of these zeros defines the quadratic faym vy vanishing
atv,v’. Any quadratic form we are looking for is obtained in this way. The
number of such representatives is equal4o’ (2972 — 1).

O
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Definition 5.4.3 Two Steiner complexé3(v) andX(v’) are calledsyzygetic
(resp.azygetic) ifw(v,v") = 0)(resp.w(v,v") = 1).

Theorem 5.4.7 The union of three mutually syzygetic Steiner complEXes,
E(v") andX(v + ') is equal toQ (V) _.

Proof Since
wv+v',v) =wlv+v,0v") =0,

we obtain that the Steiner compl&Xv + v') is syzygetic taX(v) andX(v').
Supposey € X(v) N X(v'). Theng(v + v') = q(v) + ¢(v") + w(v,v’) = 0.
This implies that(v) NX(v') C X(v+v’) and henc&(v), X(v'), X(v + ')
share the same set2f-1(2972 — 1) elements. This gives

#X()UDE)UZ(v+0") =6- 29*2(29*1 —1) -2 29*1(2972 ~1)

— 297127 — 1) = #Q(V).
O

Definition 5.4.4 A set of three mutually syzygetic Steiner complexes is called
a syzygetic triacbf Steiner complexes. A set of three Steiner complexes corre-
sponding to vectors forming a non-isotropic plane is caléygetic triadof
Steiner complexes.

LetX(v;),7 = 1,2, 3 be a azygetic triad of Steiner complexes. Then
#5(v1) N E(vg) = 2972(2971 —1).

Each sef®(v1) \ (2(v1) N X(ve)) andX(vs) \ (X(v1) N X(ve)) consists of
29-2(29-1 — 1) elements. The union of these sets forms the Steiner com-
plex X(v3). The number of azygetic triads of Steiner complexes is equal to
£22972(229 — 1) (= the number of non-isotropic planes). We leave the proofs
to the reader.

Let S4(V') denote the set of syzygetic tetrads. By Corolla.4, eacl”
S4(V') defines an isotropic planBr in V. Let Isg,(V') denote the set of-
dimensional isotropic subspaceslin

Proposition 5.4.8 LetS4(V') be the set of syzygetic tetrads. For each tetrad
T let Pr, denote the corresponding isotropic plane. The map

Sa(V) = 1s0(V), T Pr,

is surjective. The fibre over a plari€ consists of29-3(29-2 — 1) tetrads
forming a partition of the intersection of the Steiner compleXés), where
v e P\{0}.
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Proof The surjectivity of this map is proved along the same lines as we
proved Propositios.4.5. We use the fact that the symplectic group Sp(V, w
acts transitively on the set of isotropic subspaces of the same dimension. Let
T ={q,...,q} € S4(V). By definition, Pr \ {0} = {q1 + ¢2, 1 + g3, q1 +

q4}. Suppose we have another tetf&d= {q1, ..., ¢4} with Pr = Pr.. Sup-
poseT NT" # (). Without loss of generality, we may assume thiat= ¢;.

Then, after reindexing, we get + ¢; = ¢1 + ¢}, henceg; = ¢; andT = 1",

Thus the tetrad¥” with P = P are disjoint. Obviously, any € T belongs

to the intersection of the Steiner compleX®®), v € P\ {0}. It remains to
apply Lemmab.4.6. O

A closer look at the proof of Lemm&4.6shows that the fibre oveP can
be identified with the seD(P+/P)_.

Combining Propositiorb.4.8 with the computation of the numbey, of
syzygetic tetrads, we obtain the number of isotropic planés:in

#1s0y (V) = %(2% —1)(2%2972 —1). (5.28)

Let Iso,(v) be the set of isotropic planes containing a nonzero vectoi/ .
The set Isg(v) is naturally identified with nonzero elements in the symplectic
space(v' /v,w’), wherew’ is defined by the restriction af to v-. We can
transfer the symplectic form’ to 1so,(v). We obtainw’(P, Q) = 0 if and
only if P + @ is an isotropic 3-subspace.

Let us consider the s&&,(V,v) = a~1(Isoy(v)). It consists of syzygetic
tetrads that are invariant with respect to the translation. iy particular, each
tetrad fromS,(V,v) is contained inX(v). We can identify the sef,(V,v)
with the set of cardinality 2 subsets Bfv) /{v).

There is a natural pairing afi,(V, v) defined by

(T,T') = 3#TNT mod 2. (5.29)
Proposition 5.4.9 ForanyT, T’ € S,(V,v),
W'(Pp, Prr) = (T, T').

Proof LetX = {{T,T"} C S4(V) : a,(T) # a,(T")}, Y = {{P, P’} C
Isoy(v)}. We have a natural ma@, : X — Y induced bya,,. The pairing.’
defines a functiow : Y — 5. The corresponding partition &f consists of
two orbits of the stabilizer grou@ = Sp(V,w),, onY". Supposg Ty, T>} and
{T{, T3} are mapped to the same sub$& P’}. Without loss of generality,



5.4 Odd theta characteristics 233
we may assume thdt , 7] are mapped t@. Thus
(Ty + Ty, To + Ty) = (11, To) + (T4, Ty) + (Th, T7) + (T2, Ty
= (Th, Ta) + (T}, Ty).

This shows that the functioN — 5 defined by the pairing (5.29) is constant
on fibres ofa,. Thus it defines a map’ : Y — F,. Both functions are in-
variant with respect to the grou@. This immediately implies that their two
level sets either coincide or are switched. Howeygliso, (v) = 22972 — 1
and hence the cardinality of is equal to(229-2 — 1)(229~3 — 1). Since this
number is odd, the two orbits are of different cardinalities. Since thednap
is G-equinvariant, the level must coincide. O

5.4.3 Fundamental sets

Suppose we have an ordered Seff 2¢g+ 1 vectors(us, . . . , ug,+1) Satisfying
w(u;,u;) = 1unless = j. It defines a standard symplectic basis by setting

Vi = Uyt U2+ U241, Vigg = UL+ U2t U, t=1,...,0.

Conversely, we can solve thg's from thew;’s uniquely to reconstruct the set
S from a standard symplectic basis.

Definition 5.4.5 A set of2¢g + 1 vectors(uy, . .., uag+1) With w(u;, u;) =1
unlessi = j is called anormal!systenin (V,w).

We have established a bijective correspondence between normal systems
and standard symplectic bases.

Recall that a symplectic forma defines a nondegenerate null-systen¥in
i.e. abijective linearmap : V. — V"V such thatf (v)(v) = Oforallv € V. Fix
abasis(ey, ..., ea4) in V and the dual basig;, ..., t3,) in V¥ and consider
vectorsu; = ey + - - - + egq — e, i=1,...,2¢g andU29+1 =e1+ -+ ey
Then there exists a unique null-systém— V" that sends; to ¢; andusy+1
t0tag41 = t1 + -+ + tag. The vectorsy, . .., ugzg+1 form a normal system in
the corresponding symplectic space.

Let (u1,...,uz4+1) be a normal system. We will identify nonzero vectors
in V with points in the projective spad®|. Denote the points corresponding
to the vectorsy; by €;24402. FOr anyi, j # 2g + 2, consider the line spanned
by €ing+2 @andejoq42. Lete;; be the third nonzero point in this line. Now do
the same with points;; ande; with the disjoint sets of indices. Denote this
point bye;;1;. Note that the residual point on the line spannedyande;y,
is equal toe;;. Continuing in this way, we will be able to index all points
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in |V| with subsets of even cardinality (up to complementary sets) of the set
B, ={1,...,2g + 2}. This notation will agree with the notation of 2-torsion
divisor classes for hyperelliptic curves of genus$-or example, we have

w(pr,py) =#INJ mod 2.

It is easy to compute the number of normal systems. It is equal to the num-
ber of standard symplectic bases(,w). The group Sp(V,y acts simply
transitively on such bases, so their number is equal to

#Sp(2g.Fy) =297 (229 — 1)(2292 — 1) (22 — 1). (5.30)

Now we introduce the analog of a normal system for quadratic forms in

Q(V).

Definition 5.4.6 A fundamental sein Q(V') is an ordered azygetic set of
2g + 2 elements iQ(V).

The numbeRg + 2 is the largest possible cardinality of a set such that any
three elements are azygetic. This follows from the following immediate corol-
lary of Lemmab.4.1.

Lemma5.4.10 LetB = (qi,...,qr) be an azygetic set. Then the $et +
G2, ---,q1 + qr) is a normal system in the symplectic subspace of dimension
k — 2 spanned by these vectors.

The Lemma shows that any fundamental seiV') defines a normal sys-
tem inV, and hence a standard symplectic basis. Conversely, starting from a
normal systentus, ..., uag+1) @and anyg € Q(V') we can define a fundamen-
tal set(qi, ..., gag+2) by

Q1 =4q,92 =q+U1,...,q2g+2 = q + U2g41-

Since elements in a fundamental system add up to zero, we get that the
elements of a fundamental set also add up to zero.

Proposition 5.4.11 There exists a fundamental set with all or all but one
guadratic forms are even or odd. The number of odd quadratic forms in such
a basis is congruent tg + 1 modulo 4.

Proof Let(ui,...,uz,+1) be anormal systemardh, ..., ts54+1) be its im-
age under the mapg — V" defined byw. Consider the quadratic form

q= Z titj.

1<i<j<2g+1
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It is immediately checked that

qlup) = (¥) =9(29—1) =g mod 4.

Passing to the associated symplectic basis, we can compute the Arf invariant

of ¢ to get
1 ifg=1 d2
Arf(q) = 9=+ Mo
0 otherwise.

This implies that

0 ifg=0,3 mod4,

Arf(q +13) = Arf(q) + q(ug) = { .
otherwise.

Consider the fundamental set of quadij¢c8q + y7, k= 1,...,29+ 1. If g =
0 mod 4 the set consists of all even quadratic formsg I£ 1 mod 4, the
quadratic formy is odd, all other quadratic forms are evenglE 2 mod 4,
all quadratic forms are odd. Finally, ¢f= 3 mod 4, thengq is even, all other
quadratic forms are odd. O

Definition 5.4.7 A fundamental set with all or all but one quadratic forms
are even or odd is called mormallfundamental set.

One can show (see [128], p. 271) that any normal fundamental set is ob-
tained as in the proof of the previous proposition.

Choose a normal fundamental §et, . . ., g24+2) such that all the firszg+1
quadrics are of the same type. Any quadratic fgren Q (V') can be written in

the form
Pgra+ S =g+ 3¢,
iel i€l

whererl is asubsetofl, 2¢g+1] := {1,...,2¢+1}. We denote such a quadratic

form by ¢s, whereS = IU{2¢+2} considered as a subsetloRg+2] modulo
the complementary set. We can and will always assume that

#S=¢g+1 mod 2.

The quadratic forngs can be characterized by the property that it vanishes on
pointsp;;, wherei € S andj € {1,...,2g + 2}.
The following properties can be checked.

Proposition 5.4.12 e ¢gs + g7 = €s+T;

® gs + €5 = gs+r,
e gs(er) =0ifand only if#SNT + $#S =0 mod 2;
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e gs € Q(V)ifandonly if#£S =g+ 1 mod 4.

Again we see that a choice of a fundamental set defines the notation of
guadratic forms which agrees with the notation of theta characteristics for hy-
perelliptic curves.

Since fundamental sets are in a bijective correspondence with normal sys-
tems their number is given by (5.30).

5.5 Scorza correspondence

5.5.1 Correspondences on an algebraic curve

A correspondencef degreel between nonsingular curvég andCs is a non-
constant morphisri’ from C; to thed-th symmetric producCéd) of Cy. A
correspondence can be defined by its griphc Cy x Co. If Z C Céd) x Cy
is the incidence variety (the projectidh — Céd) is the universal family for
the functor represented t@é‘”), thenl'r is the inverse image of under the
morphismT" x id : C; x Cy — Céd) x Cy. Set-theoretically,

I'pr={(z,y) € C1 xCy:y € T(x)}.
We have
T(x) = Ty N ({a} x Cy), (5.31)

where the intersection is scheme-theoretical.

One can extend the map (5.31) to any divisors(gnby settingT' (D) =
pi(D)NT'r. Itis clear that a principal divisor goes to a principal divisor. Taking
divisors of degree 0, we obtain a homomorphism of the Jacobian varieties

or :Jac(G) — Jac(G).

The projectiol’ — (] is a finite map of degreé. SinceT is not constant,
the projection toCs is a finite map of degred'. It defines a correspondence
Cy — Cl(d') which is denoted by'—! and is called thenverse correspondence
Its graph is equal to the image Bfunder the switch mag'; x Cy — Cy x C1.

We will be dealing mostly with correspondencBs: ¢ — C(4 and will
identify T with its graphI'r. If d is the degree of" andd’ is the degree of
T-! we say that is the correspondence of tygd, d’). A correspondence
is symmetricf T = T—'. We assume thdf’ does not contain the diagonal
A of C x C. A united pointof a correspondence is a common point with the
diagonal. It comes with the multiplicity.
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A correspondencd’ : C — C@ hasvalencev if the divisor class of
T(x) + vz does not depend an

Proposition 5.5.1 The following properties are equivalent:

(i) T has valence;
(ii) the cohomology clasgl’] in H2(C x C,Z) is equal to

[T] = (&' + v)[{x} x Cl + (d +v)[C x {x}] - v[A],

wherez is any point onC';
(ii) the homomorphisngr is equal to homomorphisir-v] : Jac(C —
Jac(() of the multiplication by-wv.

Proof (i) = (ii). We know that there exists a divisd? on C' such that the
restrictionT + vA — p3(D) to any fibre ofp; is linearly equivalent to zero.
By the seesaw principle ([446] Chapter 2, Corollary By vA — p3(D) ~
pi(D") for some divisorD’ onC. This implies tha{?] = deg D'[{z} x C] +
deg D[C x {z}] — v[A]. Taking the intersections with fibres of the projections,
we find thatd’ = deg D’ — v andd = deg D — v.

(i) = (i) Let p1, po : CxC — C be the projections. We use the well-known
fact that the natural homomorphism of the Picard varieties

P (PIc’(C)) @ p3(Pid’(C)) — Pic’(C x O)
is an isomorphism (see [311], Chapter 3, Exercise 12.6). Fix a pgiit C

and consider the divis&f + vA — (d' +v)({zo} x C) — (d+ v)(C x {x0}).
By assumption, it is algebraically equivalent to zero. Thus

T +vA ~pi(D1) + p3(Ds)

for some divisorsDy, Dy on C. Thus the divisor clas¥(z) + vz is equal to
the divisor class of the restriction pf (D5) to {z} x C. Obviously, itis equal
to the divisor class ab-, hence is independent an
(i) < (iii) This follows from the definition of the homomorphisi-.
O

Note that for a general curv@ of genusg > 2
End(Jac(Q) = Z

(see [382]), so any correspondence has valence. An example of a correspon-
dence without valence is the graph of an automorphism of asd2of C.

Observe that the proof of the Proposition shows that for a correspondence
with valencev

T ~pi(D') +p3(D) — vA, (5.32)
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where D is the divisor class off'(x) + vz and D’ is the divisor class of
T~Y(z) + va. It follows from the Proposition that the correspondefice!
has valence.

The next result is known as tt@@ayley-Brill formula.

Corollary 5.5.2 LetT be a correspondence of tyje, b) on a nonsingular
projective curve”' of genugyy. Assume thdl’ has valence equal te. Then the
number of united points &f is equal to

d+d +2vg.

This immediately follows from (5.32) and the formuta- A = 2 — 2g.

Examples.5.1 LetC be a nonsingular complete intersection of a nonsingular
quadric@ and a cubic irP3. In other words(' is a canonical curve of genus

4 curve without vanishing even theta characteristic. For any poimtC, the
tangent plané,.(Q) cuts out the divisoRz + Dy + D5, where|z + D;| and

| + D»| are the twogs’s on C defined by the two rulings of the quadric.
Consider the corresponderifen C x C defined byT'(x) = D1 + D5. Thisis

a symmetric correspondence of tyf@e4) with valence. Its 24 united points
correspond to the ramification points of the ty/ds.

For any two correspondenc&s andT; on C one defines theomposition
of correspondencesy consideringC x C' x C with the projectiong;; : C' x
C x C — C x C onto two factors and setting

Ty o Tz = (p13)+ (P12 (Th) N p55(T2)).
Set-theoretically
TioTh={(z,y) e CxC:3z€C: (x,2) €Ty, (2,y) € Ta}.

Also T o Ty(x) = Ty (Ty(z)). Note that if7}, = T, * andTs is of type(d, d’)
we haveT) (T>(x)) — dz > 0. Thus the graph of; o T, containsdA. We
modify the definition of the composition by settidg {7, = 11 o Ty — sA,
wheres is the largest positive multiple of the diagonal componeritio$ 7.

Proposition 5.5.3 LetT) o T, = T1$T5 + sA. Suppose thal; is of type
(d;, d}) and valence;. ThenT; {Ty is of type(di da — s, dj db, — s) and valence
—v1V9 + 8.

Proof Applying Propositiorb.5.1, we can write
(1] = (dy +v1)[{z} x O] + (di + 11)[C x {z}] — 1 [A],

[Ty] = (dy + vo)[{x} x C] + (d2 + 1»)[C x {z}] — va]A].
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Easy computation with intersections gives
[T1<>T2] = (dlldlz — Vlyg)[{x} X C] + (d1d2 — ulyg)[C’ X {J}}] + (1/11/2 — S)[A}

= (dydy — s+ v)[{z} x C] + (dids — s +v)[C x {x}] + V[A],
whererv = —v1v5 + s. This proves the assertion. O

Example5.5.2  In Baker’s book [21], vol. 6, p. 11, the symmetric correspon-
denceT'{T~! is called thedirect lateral correspondence. (f-, s) is the type

of T andv is its valence, then it is easy to see tiiat T = TGT ! + sA, and

we obtain that the type af$T 1 is equal to(s(r — 1), s(r — 1)) and valence

s — 2. This agrees with Baker’s formula.

Here is one application of a direct lateral correspondence. Consider a corre-
spondence of valence 2 on a plane nonsingular cGred degreed such that
T(x) =T.(C)NC—2z. In other words'(x) is equal to the set of the remain-
ing d — 2 intersection points of the tangentawith C'. For any pointy € C the
inverse correspondence assigng tihe divisorP,(C) — 2y, whereP,(C) is
the first polar. A united point aF'$>7—! is one of the two points of the intersec-
tion of a bitangent with the curve. We have= d(d—1) —2,r =d—-2,v = 2.
Applying the Cayley-Brill formula, we find that the numbieof bitangents is
expressed by the following formula

20 = 2(d(d—1)—2)(d—3)+ (d—1)(d—2)(d(d—1) —6) = d(d—2)(d*—9).

(5.33)
As in the case of bitangents to the plane quartic, there exists a plane curve of
degree(d — 2)(d? — 9) (a bitangential curvewhich cuts out orC' the set of
tangency points of bitangents (see [538], pp. 342-357).

There are many other applications of the Cayley-Brill formula to enumera-
tive geometry. Many of them go back to Cayley and can be found in Baker’s
book. Modern proofs of some of these formulas are available in the literature
and we omit them.

Recall that a-secant lineof an irreducible space cun@ c P? of degree
d is a line? such that a general plane contanihigtersects” atd — k points
outsidel. Equivalently, the projection fror defines a finite mag’ — P! of
degreed — k.

The proof of the following formula can be found in [295], Chapte§2,

Proposition 5.5.4 LetC be a general space curve of genuand degreei.
Then the number of 4-secant lineg(dfs given by the following formula:

= %(d—2)(d—3)2(d—4)—%g(d2—7d+13—g)- (5.34)



240 Theta characteristics

There is a precise meaning of generality of a curve. We refer to loc. cit. or
[398] for the explanation.
The set of trisecant lines is infinite and parameterized by a curve of degree

(d—1)(d—3)—3g

t=(d—2) 3

(5.35)
(see [398]).

5.5.2 Scorza correspondence

Let C be a nonsingular projective curve of geruss> 0 and¢ be a non-
effective theta-characteristic @n.
Let

dy : C x C — Jac(C), (z,y) — [z —y] (5.36)

be the difference map. L&d = W ; — ¥ be the symmetric theta divisor
corresponding t@#. Define

Ry = d;(©).
Set-theoretically,

(Ro)red = {(z,y) € C x C : ho(z +9 — ) > 0}.

Lemmab5.5.5 Ry is a symmetric correspondence of tygeg), with valence
equal to—1 and without united points.

Proof Since® is a symmetric theta divisor, the divisar ' (©) is invariant
with respect to the switch of the factors &f x X. This shows thatRy is
symmetric.

Fix a pointz, and consider the map: C — Jac(() defined byi(z) =
[x — zg]. It is known (see [43], Chapter 11, Corollary (2.2)) that

0 1.(C) = (C x {to}) - d1(O) = g.

This shows thafky is of type (g, g). Also it shows thatRy(zg) — 2o + ¢ €
W,_1. For any pointz € C, we haveh’(J+z) = 1 because is non-effective.
Thus Ry(z) is the unique effective divisor linearly equivalenttot+ . By
definition, the valence aR, is equal to—1. Applying the Cayley-Brill formula
we obtain thatRy has no united points. O

Definition 5.5.1 The correspondenc&, is called theScorza correspon-
dence.
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Example5.5.3 Assumg = 1 and fix a point onC equippingC with a
structure of an elliptic curve. Thehis a non-trivial 2-torsion point. The Scorza
correspondencgy is the graph of the translation automorphism defined by

In general,Ry could be neither reduced nor irreducible correspondence.
However, for general curv of genusy everything is as expected.

Proposition 5.5.6 Assume&” is general in the sense thend(Jac(Q) = Z.
ThenRy is reduced and irreducible.

Proof The assumption that End(Jac()C~ Z implies that any correspon-
dence onC' x C has valence. This implies that the Scorza correspondence is
irreducible curve and reduced. In fact, it is easy to see that the valence of the
sum of two correspondences is equal to the sum of valences. Kindas

no united points, it follows from the Cayley-Brill formula that the valence of
each part must be negative. Since the valencR ofs equal to—1, we get a
contradiction. O

It follows from (5.32) that the divisor class @iy is equal to
Ry ~ pi(9) +p3(9) + A. (5.37)

SinceKcxc = pi(Kce) + p5(Ke), applying the adjunction formula and
using thatA N R = () and the fact thap} (J) = p3 (), we easily find

wgr, = 3pjwc. (5.38)
In particular, the arithmetic genus &% is given by
pa(Ry) =39(g— 1)+ 1. (5.39)

Note that the curveRy is very special, for example, it admits a fixed-point
free involution defined by the switching the factorsXfx X.

Proposition 5.5.7 Assume tha€’ is not hyperelliptic. Let? be a symmetric
correspondence o6' x C' of type(g, g), without united points and some va-
lence. Then there exists a unique non-effective theta charactetistic' such
that R = Ry.

Proof It follows from the Cayley-Brill formula that the valenceof R is
equal to—1. Thus the divisor class d®(z) — « does not depend an Since
R has no united points, the divisor claBs= R(x) — z is not effective, i.e.,
h°(R(x) — x) = 0. Consider the difference maf : C x C — Jac(C). For
any(z,y) € R, the divisorR(z) —y ~ D + x — y is effective of degree — 1.
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Thusdi(R) + D c WY ;. Leto : X x X — X x X be the switch of the
factors. Then

¢(R) = di(0(R)) = [-1](dr(R)) C [-1](Wy_y = D) C Wy, + I,

g

whereD’ = K¢ — D. SinceRNA = () andC is not hyperelliptic, the equality
dy(z,y) = di(2’,y’) implies(z,y) = (2',y’). Thus the difference mag, is
injective onR. This gives

R=di' (Wi, = D) = di ' (Wi_, - D).
Restricting to{z} x C we see that the divisor classé&sand D’ are equal.
HenceD is a theta characteristit. By assumptionh®(R(z) — z) = h°(9) =

0, hencey is non-effective. The uniquenessdfollows from formula (5.37).
O

Letx,y € Ry. Then the sum of two positive divisof&y (z) —y)+(Rs (y)—
x) is linearly equivalentta: + ¢ — y + y + ¢ — 2 = 29 = K. This defines
amap

v: Ry — [Kcl, (2,y) — (Ro(2) —y) + (Ro(y) — 2). (5.40)
Recall from [295], p. 360, that the theta divigordefines th&auss map
g : @0 - |KC|a

where@? is the open subset of nonsingular pointsofit assigns to a point
the tangent spack. (©) considered as a hyperplane in

T, (Jac(C)) = HY(C,0c) = HO(C, Oc(Ke))".

More geometricallyg assigns tadD — ¢ the linear span of the divisdp in the
canonical spacg |V (see [10], p. 246). Since the intersection of hyperplane
~(z,y) with the canonical curvé' contains the divisor&(z) —y (andR(y) —

z), and they do not move, we see that

vy=God;.
Lemma 5.5.8
Y (O1ke (1)) = Or, (Ry) = pi(Ko).

Proof The Gauss mag is given by the normal line bund®¢ (©). Thus the
map- is given by the line bundle

di(0e(©)) = Og, (di(©)) = Or, (Ry).

It remains to apply formula (5.37). O
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The Gauss map is a finite map of deg(%é_‘f). It factors through the map
0" — ©%/(1), wherev is the negation involution on Jac{CThe mapy also
factors through the involution ok x X. Thus the degree of the mdpy —
~v(Ry) is equal to2d(v), whered(1)) is some numerical invariant of the theta
characteristi@). We call it theScorza invariant Let

[(9) == ~v(Ry).

We considered it as a curve embeddedAnr:|. Applying Lemma5.5.8, we
obtain

Corollary 5.5.9
gg—1)

d(v)
Remarks.5.1 LetC be a canonical curve of gengsand Ry be a Scorza cor-
respondence ofi. For anyz, y € C consider the degrey divisor D(z,y) =
Ry(z)+ Ry(y) € |Kc+x+y|. Sincel2Ke — (Kc+xz+y)| = |Kec—x—yl,
we obtain that the linear system of quadrics throdx, y) is of dimension
39(g + 1) — 2g = dim |Ops-1(2)| — 2g + 1. This shows that the sé(z, y)
imposes one less condition on quadrics passing through this set. For example,
wheng = 3 we get thatD(z, y) is on a conic. Ifg = 4 it is the base set of
a net of quadrics. We refer to [192] and [230] for projective geometry of sets
imposing one less condition on quadrics (cabetf-associated sets).

degT'(¥) =

5.5.3 Scorza quartic hypersurfaces

The following construction due to G. Scorza heeds some generality assumption
onC.

Definition 5.5.2 A pair (C, ) is calledScorza general the following prop-
erties are satisfied

(i) Ry is a connected nonsingular curve;
(i) d(v) =1
(iii) I'(¥) is not contained in a quadric.

We will see in the next chapter that a general canonical curve of genus 3 is
Scorza general. For higher genus this was proven in [606].

We continue to assume th&tis non-hyperelliptic. Consider the canonical
embedding” — |K¢|¥ = P91 and identifyC with its image (the canonical
model of C). For anyz € C, the divisorRy(z) consists ofg pointsy;. If
all of them distinct we have hyperplanesy(z,y;) = (Ry(x) — y;), or, g
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points on the curv&(1). More generally, we have a map — C9) defined
by the projectiorp; : Ry — C. The composition of this map with the map
A9 0@ - ()9 is aregular mapg : ¢ — T(0)9). Let HN C =
1 + -+ + 294—2 be a hyperplane section 6f. Adding up the images of the
pointsz; under the map we obtaing(2g — 2) points on'(¥).

Proposition 5.5.10 LetD = z; + - - - 4 x2,_2 be a canonical divisor od’.
Assumé(, ¥) is Scorza general. Then the divisors

2g—2
#(D) =Y ¢(z:), DelKel,
i=1
span the linear system of divisors D) which are cut out by quadrics.

Proof First note that the degree of the divisor is equaRideg I'(¢). Let
(2.y) € Ry and D, , = v(z,y) = (Ro(x) — y) + (Ra(y) — 2) € |Kcl.
For anyz; € Ry(z) — y, the divisory(z, z;) containsy. Similarly, for any
z; € Ry(y) — z, the divisory(y, z;) containsz. This means thap(D, )

is cut out by the quadri€).,. ,, equal to the sum of two hyperplanés,, H,
corresponding to the points y € C' C |K¢|" via the duality. The image of
|Kc| in T'(19)9(29-2) spans a linear systeth (since any map of a rational
variety to Jac(I'(¢))s constant). Sinc&(¥) is not contained in a quadric, it
generate$K . This shows that all divisors i are cut out by quadrics. The
quadrics@ ,, span the space of quadrics|ific| since otherwise there exists
a quadric in|K¢|¥ apolar to all quadrics), ,. This would imply that for a
fixed x € C, the divisorRy(x) lies in a hyperplane, the polar hyperplane of
the quadric with respect to the point However, becausg is non-effective,
(Ry(z)) spansP9~!. Thusdim L > g(g + 1)/2, and, since no quadrics con-
tainsT'(¢}), L coincides with the linear system of divisors B(¢) cut out by
quadrics. O

Let E = H°(C,wc)Y. We can identify the space of quadrics|ifi| with
P(S?(E)). Using the previous Proposition, we obtain a map| — |S?(E)|.
The restriction of this map to the cunigv) is given by the linear system
|Or(9y(2)|. This shows that the map is given by quadratic polynomials, so
defines a linear map

a:S*EY) — S*(E).
The proof of the Proposition implies that this map is bijective.

Theorem 5.5.11 AssuméC, 9) is Scorza general. Then there exists a unique
quartic hypersurfacé/(f) in |E| = P91 such that the inverse linear map
a~!is equal to the polarization map — Dy (f).
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Proof Considera™! : S?(E) — S?(EVY) as a tensol/ € S?*(EY) ®
S2(EY) c (EY)®* viewed as a 4-multilinear map* — C. It is enough to
show that( is totally symmetric. Then ! is defined by the apolarity map as-
sociated to a quartic hypersurface. Fix a reduced dividrr) = z1+- - -+x,.

Let H; be the hyperplane inE| spanned byRy(z) — x;. Choose a basis
(t1,...,ty) in EY such thatd; = V(t;). It follows from the proof of Propo-
sition 5.5.10that the quadratic map(E") — P(S?(E)) assigns to the hyper-
plane H; the quadria?),. .., equal to the union of two hyperplanes associated
to z andz; via the duality. The corresponding linear magatisfies

g
=1

where (&1, ...,&,) is the dual basis tdti, ..., t,), and(by,...,b,) are the
coordinates of the point. This implies that

J 1 ifj=k=m J

U'v biiv ySm) = . =U 5 biia jySm).
& ; i bm) {0 otherwise (6 ; §i:85>8m)

This shows thaty is symmetric in the first and the third arguments when

the second argument belongs to the cuiryé). Since the curvd(¢) spans

P(EVY), this is always true. It remains to use tlatis symmetric in the first

and the second arguments, as well as in the third and the fourth arguments.

Definition 5.5.3 Let(C, ) be Scorza general pair consisting of a canonical
curve of genug and a non-effective theta characteristic Then the quar-
tic hypersurfacd/(f) is called theScorza quartic hypersurfaessociated to
(C,9).

We will study the Scorza quartic plane curves in the gase3. Very little is
known about Scorza hypersurfaces for general canonical curves of gehus
We do not even know whether they are nonsingular. However, it follows from
the construction that the hypersurface is given by a nondegenerate homoge-
neous form.

The Scorza correspondence has been recently extended top#yswhere
C is a curve of genug > 1 and@ is an effective even theta characteristic
citeAzadi2, [298].

5.5.4 Contact hyperplanes of canonical curves

Let C be a nonsingular curve of gengis> 0. Fixing a pointcy onC allows one
to define an isomorphism of algebraic varieties’Rit) — Jac(Cj, [D] —
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[D — dco]. Composing this map with the mag : C(¥ — Pic?(C) we obtain
amap
ug(co) : C9 — Jac(Q). (5.42)

If no confusion arises, we drog, from this notation. Fod = 1, this map
defines an embedding

uy : C — Jac(C.

For the simplicity of the notation, we will identifg’ with its image. For any

¢ € C the tangent space @f at a pointc is a one-dimensional subspace of
the tangent space of Jac|@t c¢. Using a translation automorphism, we can
identify this space with the tangent spakglac(Cj at the zero point. Under
the Abel-Jacobi map, the space of holomorphforms on Jac(('is identified
with the space of holomorphic forms @i. Thus we can identifyiyJac(C
with the spaceH®(C, K¢)V. As a result, we obtain theanonical mapf C

0:C —PHC,Ko)Y) = |Ko|¥ =PI,

If C is not hyperelliptic, the canonical map is an embedding.

We continue to identifyH°(C, K¢)V with TyJac(C). A symmetric odd
theta divisoro = W7, — ¢ contains the origin of Jac((C'If h°(Y) = 1,
the origin is a nonsingular point 0@, and henceé® defines a hyperplane in
To(Jac(O), the tangent hyperplang,©. Passing to the projectivization we
have a hyperplane i ¢|".

Proposition 5.5.12 The hyperplane inK¢|" defined byo is a contact hy-
perplane to the image(C') under the canonical map.

Proof Consider the difference map (5.36) : C x C — Jac(Q. In the case
wheno is an even divisor, we proved i®.37) that

di(©) ~ pi(0) +p5(0) + A. (5.43)

Since two theta divisors are algebraically equivalent the same is true for an odd
theta divisor. The only difference is thét(©) contains the diagonal as the
preimage of 0. It follows from the definition of the map(c) that

u1(c)(C) N O = dy ' (©) Np;y (o) = co + Dy,

whereDy is the unique effective divisor linearly equivalentitoLetG : © —
P(TpJac(O) be the Gauss map defined by translation of the tangent space at
a nonsingular point oD to the origin. It follows from the proof of Torelli
Theorem [10] that the Gauss map ramifies at any point whereeetsu, (C).

So, the image of the Gauss map intersects the canonical image with multiplicity
> 2 at each point. This proves the assertion. O
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More explicitly, the equation of the contact hyperplane corresponding to
O is given by the linear term of the Taylor expansion of the theta function
6 [r] corresponding t®. Note that the linear term is a linear function on
H°(C,K¢)V, hence can be identified with a holomorphic differential

o= 3 2L,

aZi
where(z1,.. ., z,) are coordinates itH"(C, K-)" defined by a normalized
basiswi, ...,w, of H°(C,K¢). A non-zero section 00;4¢()(©) can be

viewed as a holomorphic differential of ordér To make this more precise,
i.e. describe how to get a square root of a holomorghiorm, we use the
following result (see [238], Proposition 2.2).

Proposition 5.5.13 Let © be a symmetric odd theta divisor defined by the
theta functiord [, ]. Then for allz, y € C,

0[5 (di(z —y)* = he(p(x))he(p(y)) E(z,y)*,
whereE(z, y) is a certain section 00¢««(A) (the prime-form).

An attentive reader should notice that the equality is not well-defined in
many ways. First, the vectagr(x) is defined only up to proportionality and the
value of a section of a line bundle is also defined only up to proportionality. To
make sense of this equality we pass to the universal cover of Jad¢atified
with H°(C, K¢)V and to the universal covedy of C' x C and extend the
difference map and the mapto the map of universal covers. Then the prime-
form is defined by a certain holomorphic function Grand everything makes
sense. As the equality of the corresponding line bundles, the assertion trivially
follows from (5.43).

Let
0n](di(z—y))

E(z,y)
SinceE(z,y) = —E(y,z) andd [ ] is an odd function, we hawe ;| (z,y) =

€

t[q](y,x) foranyz,y € C x C'\ A. It satisfies

t[n] (z,9)* = he(p(z))he(p(y)). (5.44)

Note thatE(z, y) satisfiesE (z,y) = —E(y, x), sinced [ ] is an odd function,
we haver [ ;] (z,y) =t[n](y,2z) foranyz,y € C x C'\ A.

Now let us fix a pointy = ¢, S0 we can define th®ot functionon C. It is
arational function on the universal cover@fdefined byt [ ;] (z, co).

Thus every contact hyperplane of the canonical curve defines a root function.

e[n](z,y) =
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Suppose we have two odd theta functidts, ], 0 {f}} Then the ratio of

. . . 0[5 1(di (z—c . .
the corresponding root functions is equal ",]( 1(&—co)) and its square is a
o & ] @ra-con
rational function on”, defined uniquely up to a constant factor depending on

the choice ofy. Its divisor is equal to the differenc®) — 2. Thus we can

1
view the ratio as a section &f 2 with divisorf —¢'. This section is not defined
onC but on the double cover @¥ corresponding to the 2-torsion poifit- «’.
If we have two pairg}, ¥, 92, 9, of odd theta characteristics satisfyifig —
¥ =95 — ¥, = ¢, i.e. forming a syzygetic tetrad, the product of the two ratios

is a rational function ol with divisor ¥, + ¢, — ¥ —¥». Following Riemann
[516] and Weber [647], we denote this function 9@%. By Riemann-Roch,
hO(91 4+ 0%) = h°(Kc +€) = g — 1, hence any pairs(d,,9}), . . ., (g, 7))

of odd theta characteristics in a Steiner complex defilieearly independent

functions, / Z;zé Y % After scaling, and getting rid of squares by
using (5.44) we obtain a polynomial e, (¢(x)), . .., he, (¢()) vanishing
on the canonical image df.

Examples.5.4 Letg = 3. We take three pairs of odd theta functions and get
the equation

VLI, + /9205 + /9305 = 0. (5.45)
After getting rid of square roots, we obtain a quartic equatio@’ of
(Im 4 pq — 75)* — 4dlmpq = 0, (5.46)

wherel, m,p, q,rs are the linear functions inq, 2, z3 defining the linear
terms of the Taylor expansion @atof the odd theta functions corresponding
to three pairs in a Steiner complex. The number of possible ways to write the
equation of a plane quartic in this form is equabg 20 = 1260.

Remark5.5.2  For any non-zerp-torsion point, the linear systefi« + ¢
mapsC to P92, the map is called thBrym canonical map\Ve have seen that
the root functions, / g;gi belong toH°(C, K¢ + €) and can be used to define
the Prym canonical map. Fgr= 3, the map is a degree 4 cover®f and we
expressed the quartic equation®fs a degree 4 cover Bf .
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Exercises

5.1Let C be an irreducible plane curve of degréwith a (d — 2)-multiple point. Show
that its normalization is a hyperelliptic curve of genus= d — 2. Conversely, show
that any hyperelliptic curve of genysadmits such a plane model.

5.2 Show that a nonsingular curve of genus 2 has a vanishing theta characteristic but a
nonsingular curve of genus 3 has a vanishing theta characteristic if and only if it is a
hyperelliptic curve.

5.3 Show that a nonsingular non-hyperelliptic curve of genus 4 has a vanishing theta
characteristic if and only if its canonical model lies on a quadratic cone.

5.4Find the number of vanishing theta characteristics on a hyperelliptic curve of genus
g.

5.5Show that a canonical curve of gerubas 10 vanishing even theta characteristics

if and only if it is isomorphic to the intersection of three simultaneously diagonalized
quadrics inP*.

5.6 Compute the number of syzygetic tetrads contained in a Steiner complex.

5.7 Show that the composition of two correspondences (defined as the composition of
the multi-valued maps defined by the correspondences) with valeneesl v’ is a
correspondence with valeneavv/'.

5.8Let f : X — P! be a non-constant rational function on a nonsingular projective
curve X . Consider the fibred produéf x: X as a correspondence 6 x X. Show

that it has valence and compute the valence. Show that the Cayley-Brill formula is
equivalent to the Hurwitz formula.

5.9Suppose that a nonsingular projective cukvadmits a non-constant map to a curve
of genus> 0. Show that there is a correspondenceX®mwithout valence.

5.10Show that any correspondence on a honsingular plane cubic has valence unless the
cubic is harmonic or equianharmonic.

5.11Describe all symmetric correspondences of tigpel) with valence 1 on a canon-
ical curve of genus 4.

5.12Let Ry be the Scorza correspondence on a cdtvBrove that a pointz, y) € Ry
is singular if and only ifr andy are ramification points of the projectiofisy — C.

Historical Notes

It is a too large task to discuss the history of theta functions. We only men-
tion that the connection between odd theta functions with characteristics and
bitangents to a quartic curves goes back to Riemann [516], [647]. There are
numerous expositions of the theory of theta functions and Jacobian varieties
(e.g. [10], [126], [447]). The theory of fundamental sets of theta characteris-
tics goes back to A. @pel and J. Rosenhein. Its good exposition can be found
in Krazer's book [388]. As an abstract symplectic geometry over the field of
two elements it is presented in Coble’s book [133] which we followed. Some
additional material can be found in [128] (see also a modern expaosition in
[529)).
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The theory of correspondences on an al