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ABSTRACT CONFIGURATIONS IN ALGEBRAIC
GEOMETRY

I. DOLGACHEV

To the memory of Andrei Tyurin

Abstract. An abstract (vk, br)-configuration is a pair of finite
sets of cardinalities v and b with a relation on the product of the
sets such that each element of the first set is related to the same
number k of elements from the second set and, conversely, each
element of the second set is related to the same number r of el-
ements in the first set. An example of an abstract configuration
is a finite geometry. In this paper we discuss some examples of
abstract configurations and, in particular finite geometries, which
one encounters in algebraic geometry.
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1. Introduction

In this paper we discuss some examples of abstract configurations
and, in particular finite geometries, which one encounters in algebraic
geometry. The Fano Conference makes it very appropriate because
of the known contribution of Gino Fano to finite geometry. In his
first published paper [18] he gave a first synthetical definition of the
projective plane over an arbitrary field. In [18] introduces his famous
Fano’s Postulate. It asserts that the diagonals of a complete quadrangle
do not intersect at one point. Since this does not hold for the projective
plane over a finite field of two elements (the Fano plane), the postulate
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2 I. DOLGACHEV

allows one to exclude the case of characteristic 2. Almost forty years
later he returned to the subject of finite projective planes in [19].

An abstract (vk, br)- configuration is a pair of finite sets of cardinal-
ities v and b with a relation on the product of the sets such that each
element of the first set is related to the same number k of elements
from the second set and, conversely, each element of the second set is
related to the same number r of elements in the first set. A geometric
realization of an abstract configuration is a realization of each set as
a set of linear (or affine, or projective) subspaces of certain dimension
with a certain incidence relation. Any abstract configuration admits
a geometric realization in a projective space of sufficient large dimen-
sion over an infinite field. The existence of a geometric realization in
a given space over a given field, for example, by real points and lines
in the plane, is a very difficult problem. A regular configuration is an
abstract configuration which admits a group of automorphisms which
acts transitively on the sets A and B. Many regular configurations arise
in algebraic geometry, where the sets A and B are represented by sub-
varieties of an algebraic variety with an appropriate incidence relation.
The most notorious example is the Kummer configuration (166, 166)
of points and tropes of a Kummer surface, or the Hesse configuration
(93, 124) arising from inflection points of a nonsingular plane cubic. In
this paper we discuss other well-known or less known configurations
which admit an “interesting” realizations in algebraic geometry. I am
not attempting to define what does the latter mean. I leave to the
reader to decide whether the realization is an interesting realization or
not.

I am thankful to J. Keum for some critical comments on the paper
and to D. Higman and V. Tonchev for helping with references to the
theory of designs.

2. Configurations, designs and finite geometries

2.1. An abstract configuration is a triple {A,B, R}, where A,B are
non-empty finite sets and R ⊂ A×B is a relation such that the cardi-
nality of the set

R(x) = {B ∈ B : (x, B) ∈ R}

(resp, the set

R(B) = {x ∈ A : (x, B) ∈ R})

does not depend on x ∈ A (resp. B ∈ B). Elements of A are called
points, elements of B are called blocks. If

v = #A, b = #B, k = #R(x), r = #R(B),
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then a configuration is said to be an (vk, br)-configuration. A symmetric

configuration is a configuration with #A = #B, and hence k = r. It is
said to be an vk-configuration.

We will assume that for any two distinct elements x, y ∈ A (resp.
B, B′ ∈ B), we have R(x) 6= R(y) (resp. R(B) 6= R(B′)). This, for
example, excludes symmetric configurations vk with v = k. Under this
assumption we can identify the set B with a set of subsets (blocks)
of the set A of cardinality r such that each element of A belongs to
exactly k blocks.

Note that we consider only a special case of the notion of an abstract
configuration studied in combinatorics. Ours is a tactical configuration.

2.2. The Levi graph. An abstract (vk, br)-configuration can be uniqu
ely represented by its Levi graph (see [9]). In this graph elements of A
are represented by black vertices and elements of B by white vertices.
An edge joins a black vertex and a white vertex if and only if the
corresponding elements are in the relation. The Levi graph of a vk-
configuration is k-valent, i.e. each vertex is incident with exactly k
edges. A k-valent graph with 2v-vertices is the Levi graph of a vk-
configuration if the set of vertices can be partitioned into two sets
of cardinality v such that two vertices belonging to one set are not
connected by an edge.

2.3. Direct sums, complements. One defines naturally the direct
sum of configurations of type (vk, br) and type (v′

k′, b′r′). This is a
configuration of type

(

(v + v′)k, (b + b′)r

)

. A configuration is called
connected if it is not equal to a direct sum of configurations. Or, equiv-
alently, for any x, y ∈ A ∪ B there exist z1, . . . , zk ∈ A ∪ B such that
(xRz1), (z1Rz2, . . . , (znR, y), where for any x, y ∈ A ∪ B we write xRy
if either (x, y) ∈ R or (y, x) ∈ R.

For any symmetric vk-configuration, one defines the complementary

(vv−k)-configuration whose blocks are the complementary sets of blocks
of the first configuration.

2.4. Symmetry. Let Sym(C) denote the group of symmetries of a
(vk, br)-configuration C defined as a subgroup of bijections g of the set
A ∪ B such that for any p ∈ A, q ∈ B, we have g(p) ∈ R(g(q)) if and
only if p ∈ R(q) and g(q) ∈ R(g(p)) if and only if q ∈ R(p). Note
that, if k 6= r, the subsets A and B are necessarily invariant under any
symmetry (since g(R(p)) = R(g(p))). However, if the configuration is
symmetric, Sym(C) may contain an element such that g(A) = B. We
will call it a switch. A switch of order 2 is called a polarity, or duality,
see ([13]). The group of symmetries of the configuration which preserve
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each set A and B is of index ≥ 2 in the full group of symmetries. We
will call it the proper group of symmetries of the configuration.

If the configuration is connected, then each symmetry either pre-
serves the sets A and B, or a switch. Of course, the notion of a symme-
try of a configuration is a special case of the notion of an isomorphism

of configurations, or even a morphism of configurations.
A configuration is called s-regular if its symmetry group acts tran-

sitively on the set of s-arcs but not on the set of (s + 1)-arcs of its
Levi graph. Recall that an s-arc of a graph is an ordered sequence of
oriented s-edges consecutively incident.

2.5. Designs. A block-scheme or a design is a (vk, br)-configuration
such that, for any distinct x, y ∈ A, the cardinality λ of the set R(x)∩
R(y) does not depend on x, y and is non-zero. The number λ is called
the type of a (vk, br)-design. A standard argument shows that

(2.1) vk = br, k(r − 1) = λ(v − 1).

In particular, λ is determined by v, k, b, r.
A symmetric vk-design of type λ has the additional property that,

for any B1, B2 ∈ B, #R(B1) ∩ R(B2) = λ.
According to a theorem of Bruck-Chowla-Ryser (see [22]) k − λ

is always a square if v is even and the quadratic form (k − λ)x2 +

(−1)
v−1

2 λy2 − z2 represents zero if v is odd.

2.6. Projective geometries. (see [27]) Let Pn(Fq) be the set of points
of projective space of dimension n over a finite field of q = pr elements.
Let Gr,n be the Grassmannian of r-dimensional subspaces in Pn. It is
known that

#Gr,n(Fq) = m(r, n; q),

where

(2.2) m(r, n; q) =
[

n + 1
r + 1

]

q
:=

(1 − qn+1) · · · (1 − qn−r+1)

(1 − q) · · · (1 − qr+1)
.

Let A = Gr,n(Fq),B = Gs,n(Fq), r < s. We take for R the incidence
relation R = {(L, M) ∈ A × B : L ⊂ M}. Since each r-subspace is
contained in m(s−r−1, n−r−1; q) subspaces of dimension s, and each
subspace of dimension s contains m(r, s; q) subspaces of dimension r,
we obtain a (m(r, n; q)m(s−r−1,n−r−1;q), m(s, n; q)m(r,s;q))-configuration.

We say that it is a projective geometry configuration and denote it
by PG(n, r, s; q). It is a design if and only if r = 0. The type λ is equal
to m(s − 2, n − 2; q).
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Note that the projective duality gives an isomorphism of configura-
tions

(2.3) PG(n, r, s; q) ∼= PG(n, n − s − 1, n − r − 1; q).

In the case s = n− r−1, we get a symmetric m(r, n; q)m(s−r−1,n−r−1;q)-
configuration.

The smallest design obtained in this way is PG(2, 0, 1; 2). It is called
the Fano plane.

Figure 1.

Its Levi graph is a 4-regular graph (its 4-arcs correspond to sequences
point-line-point-line-point or line-point-line-point-line).

Figure 2.
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2.7. An abstract projective geometry configurations. One de-
fines an abstract version of a configuration PG(n, 0, 1; q) as a (vk, br)-
design with λ = 1 and b ≥ 3. We call the elements of B lines and, for
any x, y ∈ P denote the unique line in R(x, y) by x + y. If x ∈ R(B),
we say that the line B contains the point x. A design of type λ = 1 is
called a line-point abstract configuration (see [36]).

A projective geometry is a line-point configuration satisfying the fol-
lowing additional condition:

(*) If x ∈ B1 ∩ B2 and x′, x′′ ∈ B1 \ {x}, y′, y′′ ∈ B2 \ {x}, then the
lines x′ + y′ and x′′ + y′′ have a common point.

Figure 3.

One defines a subspace of a projective geometry as a subset L of P
such that, for any distinct x, y ∈ L, any point z ∈ x + y belongs to
L. This allows one to define the dimension of a projective geometry.
A theorem due to D. Hilbert says that that all projective geometries
of dimension > 2 are isomorphic to a configuration PG(n, 0, 1; q) or its
affine analog AG(n, 0, 1, q) (see [13], p.26). A projective plane is iso-
morphic to PG(2, 0, 1; q) or its affine analog if and only if the following
Desargues axiom is satisfied.

(**) Let (x, y, z) and (x′, y′, z′) be two triangles without common
vertices (i.e. ordered sets of three points with no common points).
Assume that the 3 pairs of lines (x + y, x′ + y′), (y + z, y′ + z′) and
(x + z, x′ + z′) intersect at three collinear points. Then the lines x +
x′, y + y′, z + z′ have a common point.

Figure 4.
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Any vk-design of type λ = 1 is defined by an abstract projective
plane (see [29], Theorem 2.21). It follows from equation (2.1) that
v = (k − 1)2 + (k − 1)2 + 1.

2.8. Note that, when the condition of the Desargues axiom are satis-
fied we have 10 lines and 10 points forming a symmetric configuration
103. It is called the Desargues configuration. An easiest way to con-
struct such configuration is as follows. Take a basis e1, . . . , e4 of a
vector space V over a field k and add a vector e5 = e1 + e2 + e3 + e4.
Let πijk be the planes in P(V ) spanned by ei, ej, ek. Let Lij be the
line spanned by the vectors ei, ej. A general plane π in P(V ) intersects
the union of the 10 planes πijk at the union of 10 lines lijk. Each line
contains three points pij , pik, pik. They are the points of intersection of
π with the lines Lij , Lik, Ljk. Each point pij is contained in three lines
lijm, lijn, lijt, where {m, n, t} is the subset of {1, . . . , 5} complementary
to {i, j}. Here is the Levi graph of the Desargues configuration:

Figure 5.

2.9. All projective planes are symmetric designs with λ = 1. Planes
for which the Desargues axiom fails are called non-desarguesian planes.
Some of them can be constructed as projective planes over some non-
associative analogs of a finite field (near-fields). In all known examples
of projective planes the number of points on a line minus 1 (called the
order of a plane) is always equal to a power of a prime number. The
order of the plane P2(Fq) is of course equal to q.

A non-desarguesian plane of smallest possible order equal to 23 was
constructed by Donald Knut (see [22], 12.4).

3. Configurations in Algebraic Geometry

3.1. Linear configurations. A linear (vk, br)-configuration over an
infinite field K is a configuration in which the set A (resp. B) is
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realized by a set of linear subspaces of dimension d1 (resp. d2) of
a projective space Pn

K , and the relation R is an incidence relation
x ∈ R(y) if x intersects y along a subspace of fixed dimension s. The
data (Pn

K , s; dA, dB) is the type of a linear realization.
For example, any finite linear configuration PG(n, r, s; q) is a linear

configuration over F̄q. One can show that a finite projective plane can-
not be realized as a line-point configuration over a field of characteristic
zero. I don’t know whether it is true for larger n.

Note that the sum of two linear configurations is a linear config-
uration. We consider the corresponding projective spaces as disjoint
subspaces of a projective space and take the joins of subspaces realizing
the elements of B-sets.

3.2. Dimension reduction. One can perform the following opera-
tions which replace a linear (vk, br)-configuration of type (Pn

K , s; dA, dB)
with isomorphic linear (vk, br)-configuration.

(i) (Duality): The Pn
K is replaced with the dual projective space P̌n

K

and the linear subspaces V with the corresponding orthogonal
subspace V ⊥. The type changes to (Pn

K , n+s−dA−dB−1; n−
dB − 1, n − dA − 1).

(ii) (Intersection) Take a linear subspace H of dimension r ≥ n− s
which intersects each subspace from A∪ B and its intersection
subspaces transversally. Here we use the assumption that the
ground field is infinite. Then H cuts out a configuration of type
(Pr

K , s − n + r, dA − n + r, dB − n + r).
(iii) (Projection) Let d = max{dA, dB}. Take a linear subspace H

of codimension c > d+1 such that for any subspace V ∈ A and
any subspace W ∈ B the intersection of the joins 〈V, H〉 and
〈W, H〉 coincide with the join 〈V ∩W, H〉. Then the projection
to Pc−1 from H defines a configuration of type (Pc−1

K , s, dA, dB).

Combining these operations we may sometimes reduce the dimen-
sion n of a configuration of type (Pn, s, dA, dB). Also observe that
any abstract (vk, br)-configuration admits a linear realization of type
(Pr

K , 0, 0, r − 1). It suffices to choose v points in Pr such that any sub-
set of A of cardinality r spans a hyperplane. Then for any B ∈ B we
consider a hyperplane spanned by R(B) points from A. This will give
a point-hyperplane realization of the abstract configuration.

3.3. Definition. Let X be a projective algebraic variety over an alge-
braically closed field K. We say that X realizes a (vk, br)-configuration
if X contains a set A of v irreducible subvarieties of dimension dA and
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a set B of b irreducible subvarieties of dimension dB such that each sub-
variety from the set A intersects k subvarieties from the set B along an
irreducible subvariety of dimension s and each subvariety from the set B
intersects r subvarieties from the set A along an irreducible subvariety
of dimension s.

The type of the realization is the data (X, s; dA, dB).

3.4. It seems that all “interesting” classical configurations encoun-
tered in algebraic geometry always arise from a linear configuration
when one considers some birational morphism X → Pn

K .

3.5. Example. Any finite linear configuration PG(n, r, s; q) is realized
in Pn

K or in its appropriate blow-up, where K = F̄q. For example, any
projective plane PG(2, q) is realized in the blowing up of the set of its
points. Another linear realization of this configuration can be obtained
as follows. The linear system of curves in P2

K of sufficiently high degree
d passing simply through the set of points P(Fq) will map the blow-up
to projective space such that the images of the exceptional curves will
be lines and the image of the proper transform of a line in PG(2, q) will
span a linear subspace of codimension q + 1.

3.6. Definition. Let H be a subgroup of Sym(C), where C is a (vk, br)-
configuration. Suppose that C is realized in X. We say that H is a
group of symmetries of a realization if each element of H is induced by
an automorphism of X. The symmetry group of the realization is the
largest subgroup of Sym(C) realized as a subgroup of Aut(X).

We are interested in realizations of abstract configurations with as
large symmetry group as possible.

3.7. Example. In Example 3.5, any projective automorphism g ∈
PG(n, q) is a symmetry of the configuration. It is also a symmetry
of the realization. If k = n − k − 1, then taking the projective duality,
we obtain a switch of the configuration. However, it is not realized as
an automorphism of the variety.

4. Modular configurations

4.1. Abstract (p(p + 1)p, p
2
p+1)-configuration. Let p > 2 be a prime

number and G = (Z/pZ)2. We take for A the set of cosets of subgroups
of G of order p and take for B the set G. The relation is defined by the
inclusion of an element in a coset. There are p + 1 subgroups of order
p, each generated either by (1, 0) or by (n, 1), n ∈ Z/pZ. This defines
a (p(p + 1)p, p

2
p+1)-configuration.



10 I. DOLGACHEV

More generally, we can consider the set of cosets of subgroups of
order N in G = (Z/NZ)2. We have

(4.1) s(N) = N
∏

p|N

(1 + p−1), p is prime

Similar to the above we will define an abstract (Ns(N)N , N2
s(N))-configu-

ration.

4.2. A linear realization. (see [43], [30]) Let K be a field containing
p different p-th roots of unity. Consider a projective representation of G
in P

p−1
K (the Schrödinger representation) defined by mapping σ = (1, 0)

to the projective transformation

σ : (x0, . . . , xp−1) 7→ (xp−1, x0, x1, x2, . . . , xp−2)

and mapping (0, 1) to the projective transformation

τ : (x0, . . . , xp−1) 7→ (x0, ǫx1, . . . , ǫ
p−1xp−1),

where ǫ is a primitive p-th root of unity. One checks that each subgroup
H of G leaves invariant exactly p hyperplanes. Thus we have a set A
of p(p + 1) hyperplanes. Consider the transformation ι of P

p−1
K defined

by the formula

ι : (x0, x1, x2, . . . , xp−2, xp−1) 7→ (x0, xp−1, xp−2, . . . , x2, x1).

The set of fixed points of ι is equal to the union of a subspace F+ of
dimension 1

2
(p − 1) and a subspace F− of dimension 1

2
(p − 3). The

translates Eg = g(F−) of F− under the transformations g ∈ G define
a set B of p2 subspaces of dimension 1

2
(p − 3). One checks that each

subspace Eg is contained in p + 1 hyperplanes from A corresponding
to the cosets containing g. Also each hyperplane from A contains p
subspaces from B corresponding to the elements in the coset. This
defines a linear realization of the (p(p + 1)p, p

2
p+1)-configuration.

4.3. Hyperflexes of an elliptic curve. Let E be an elliptic curve
embedded in P

p−1
K by the linear system |px0|, where x0 is the zero point.

Each p-torsion point x is mapped to a hyperosculating point, i.e. a
point x such that there exists a hyperplane which cuts out the divisor
px in E. The image of the zero point x0 belongs to F−, so that the
image of a g-translate of x0 is mapped to Eg. Thus each hyperosculating
point belongs to a unique subspace Eg. A hyperplane from A cuts out
E in p hyperosculating points. When p = 3 we obtain the famous Hesse

(94, 123) configuration (or Wendepunkts-configuration) of 9 inflections
points of a nonsingular plane cubic which lie by three in 12 lines.
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4.4. Symmetries. The group Γ = SL(2, Fp) acts naturally on G per-
muting transitively subgroups of order p. There is a projective repre-
sentation of Γ in P

p−1
K which leaves the spaces F+ and F− invariant.

The restriction of the representation to each space is derived from a
linear irreducible representation of Γ. The group of symmetries of
the modular configuration is isomorphic to the semi-direct product of
groups SL(2, Fp) and G. Its order is p3(p2 − 1). It is realized by pro-

jective transformations of P
p−1
K . When p = 3, we get a group of order

216 of projective transformations of the projective plane. It is called
the Hesse group.

4.5. Modular surfaces. A modular surface of level N > 2 is an el-
liptic surface π : S(N) → B representing the universal elliptic curve of

level N . Its base B is the modular curve X(N) = H/Γ(N), where

Γ(N) = {A =

(

a b
c d

)

∈ SL(2, Z) : A ≡ I2 mod N}.

It is a normal subgroup of SL(2, Z) with quotient group SL(2, Z/NZ)
of order 2µ(N), where

µ(N) =
N3

2

∏

p|N

(1 − p−2), p is prime .

The Mordell-Weil group MW of sections of π is isomorphic to (Z/NZ)2.
Singular fibres of π lie over

c(N) = µ(N)/N

cusp points in X(N). Each fibre is of type ÃN−1 (or Kodaira’s type IN).
For every b ∈ B let Θ0

b be the irreducible component of the fibre Fb =
π−1(b) which intersects the zero section. Then Θ0

b is intersected by N
sections forming a subgroup Hb of order N of MW. Other components
correspond to cosets with respect to Hb. We denote by Θb(s̄) the
component of Fb which is intersected by the sections from a coset s̄ =
s + Hb. For subgroup H let BH denote the subset of B such that
H = Hb. The cardinality of this set does not depend on H and is
denoted by h(N). We have

(4.2) h(N) = c(N)/s(N) =
N

2

∏

p|N

(1 − p−1) =
1

2
ϕ(N).

For each subgroup H choose a cusp b such that Hb = H . Let C′ be
the subset of cusps obtained in this way. The group G = SL(2, Z/NZ)
acts transitively on the set C of cusps. The stabilizer subgroup Gb of
a cusp b is a cyclic group of order N . Its normalizer N(Gb) is a group



12 I. DOLGACHEV

of order Nh(N) isomorphic to the stabilizer of the subgroup Hb in the
natural action of SL(2, Z/NZ) on the set of subgroups of (Z/NZ)2.

We have a realization of the (Ns(N)N , N2
s(N))-configuration by a set

of irreducible components of fibres Fb, b ∈ C′, and the set of sections.
The type of this realization is (S(N), 0, 1, 1). We call it a modular

configuration of level N .

4.6. Hesse pencil. In the case N = 3, the modular surface S(3) is
obtained by blowing up the base points of the Hesse pencil of plane
cubic curves

λ(x3
0 + x3

1 + x3
2) + µx0x1x2 = 0.

For each nonsingular member of the pencil the set of its inflection points
coincide with the set of base points. The sections are the exceptional
curves of blowing-up. Thus we see that the modular configuration in
this case is isomorphic to the Hesse (123, 94)-configuration.

4.7. A projective embedding. Note that the blowing-down mor-
phism f : S(3) → P

2 is given by the linear system |D|, where 3D ∼
−KS(3) +

∑

s∈MW s. The canonical class KS(3) of S(3) is equal to −F ,
where F is any fibre of f . Assume that N = p > 3 is prime. One looks
for a linear system |D| on S(p) which defines a birational morphism
f : S(p) → Pp−1 satisfying the following properties:

(i) the restriction of f to each nonsingular fibre Fb is given by the
linear system

∣

∣pxb

∣

∣, where xb is the intersection point of Fb and
the zero section s0;

(ii) the restriction of f to each section (identified with the base)
is given by the linear system

∣

∣λp−3/2
∣

∣, where λ is a divisor of

degree p2−1
24

generating the group of SL(2, Fp)-invariant divisor
classes on X(p) (see [14]);

(iii) the map is equivariant with respect to the action of (Z/pZ)2 ⋊

SL(2, Fp) on S(p) and in Pp−1.

It is known (see [44]) that

KS(p) = 3(p − 4)f ∗(λ),

s2 = −χ(S(p),OS(p)) = −p deg(λ) = −µ(p)/12 = −pc(p)/12.

It follows from (i)-(iii) that

pD =
∑

s∈MW

s +
1

2
p(p − 1)f ∗(λ).

It is known (see [2]) that there exists a unique divisor I on S(p) such
that pI ∼

∑

s. Thus we must have D = I + p−1
2

f ∗(λ). Suppose the
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linear system |D| contains an invariant subsystem which defines a bi-
rational map f : S(p) → Pp−1. Then the image of each section s spans
a projective subspace Es of dimension (p − 3)/2. The corresponding
embedding of X(p) in Es is the Klein z-model of the modular curve
(see [14]). The image of a nonsingular fibre is a Schrödinger-invariant
elliptic curve of degree p in Pp−1. The image of each irreducible com-
ponent Θb(s̄) of a singular fibre is a line. We would like also that the
orbit of such a line with respect to the group N(SL(2, Fp)b) spans a
hyperplane H(s̄). Then the configuration formed by the subspaces Es

and hyperplanes H(s̄) will be isomorphic to the Segre configuration
described in 4.2.

Let Θbi
(s̄), i = 1, . . . , (p−1)/2, be the components of reducible fibres

such that Hbi
is the same subgroup H of MW and s̄ is the same coset

with of H . Then we have to show that

D ∼
∑

s∈{s}

s +

(p−1)/2
∑

i=1

aiΘbi
(s̄),

for some positive coefficients ai. Unfortunately, I do not know how to
do it for any p. For p = 5 it is proven in [2], and it is also known to be
true for p = 7.

5. The Ceva configuration

5.1. It is is constructed as follows (see [4]). Let K be a field of char-
acteristic prime to n containing the group µn of nth roots of unity.
Consider the following n3 points in the projective plane P2

K :

P0,α = (0, 1, α), P1,α = (α, 0, 1), P2,α = (1, α, 0),

where α ∈ µn. Let L0,α be the line joining the point (1, 0, 0) with
P0,α, L1,α be the line joining the point (0, 1, 0) with P1,α, and L2,α be
the line joining the point (0, 0, 1) with P2,α. One immediately checks
that the lines L0,α, L1,β , L2,γ intersect at one point pα,β,γ if and only if
αβγ = −1. Thus we obtain n2 points which together with 3n lines Li,α

form a (n2
3, 3nn)-configuration. It is called the Ceva configuration and

will be denoted by Ceva(n).

5.2. Symmetries. For n 6= 3, the full symmetry group of this config-
uration is equal to the semi-direct product µ2

n ⋊S3. It is realized by the
group of projective transformations of P

2
K generated by permutation of

the coordinates and homotethies (x0, x1, x2) 7→ (αx0, βx1, γx2), where
αβγ = 1.

When n = 3, the symmetry group is larger. If one realizes the
configuration in P

2(F4), then we get an additional symmetry realized
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by the Frobenius automorphism. Also we have a duality automorphism.
The resulting group is the Hesse group of order 216.

5.3. Blow-up. Blowing up the set of points pα,β,γ, we get a rational
surface V together with a morphism π : V → P1 whose general fibre
is a nonsingular curve of genus g = (n − 1)(n − 2)/2. There are 3
singular fibres; each is the union of n smooth rational curves with self-
intersection 1 − n intersecting at one point. The morphism admits n2

disjoint sections; each is a smooth rational curve with self-intersection
−1. The Ceva configuration is realized by the set of sections and the set
of irreducible components of singular fibres. If n 6= 3, the symmetry
group of the configuration is realized by an automorphism group of
the surface. As we will see in the last section there is a realization of
Ceva(3) which realizes a subgroup of index 2 of Sym(Ceva(3)).

In the case n = 2, V is a minimal nonsingular model of a 4-nodal
cubic surface, and the morphism is induced by a pencil of conics. In
the case n = 3, V is a rational elliptic surface with 3 singular fibres of
type IV with Mordell-Weil group containing a subgroup isomorphic to
(Z/3Z)2.

6. v3-configurations

6.1. Linear realization. All v3-configurations can be linearly realized
in P3

K by v points in general linear position and v planes.

6.2. Symmetries. The group of symmetries of an abstract v3-configu-
ration with s-regular Levi graph is of order 2s3n (see [9]).

6.3. v ≤ 6. There is a unique v3-configuration for v = 4, 5, 6.
A 43-configuration is realized by the vertices and faces of a tetrahe-

dron. Its Levi graph is 1-regular
A 53-configuration can be realized by 5 points p1, . . . , p5 in general

linear position in P3
K and the planes

〈p1, p2, p5〉, 〈p1, p2, p3〉, 〈p2, p3, p4〉, 〈p3, p4, p5〉, 〈p1, p4, p5〉.

Its Levi graph is 2-regular.
A 63-configuration can be realized by 6 points p1, . . . , p6 in general

linear position in P3
K and the planes

〈p1, p3, p4〉, 〈p1, p4, p6〉, 〈p1, p2, p5〉, 〈p2, p3, p6〉, 〈p2, p4, p5〉, 〈p3, p5, p6〉

Its Levi graph is 2-regular.
All these configurations satisfy the property that there exist two

distinct x, y ∈ A such that #R(x) ∩ R(y) > 1. Obviously such config-
uration cannot be realized by points and lines in projective space.
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6.4. 73-configuration. There is a unique line-point 73-configuration.
It is isomorphic to the Fano plane. The symmetry group of its natural
realization in PF̄2

is isomorphic to PGL(2, F2) and is smaller than the
group of symmetry of the configuration. The latter is generated by this
subgroup, the Frobenius and a switch. Let X be the blow-up of this
realization. Now the set A is represented by seven (−1) curves and the
elements of B are realized by seven (−2)-curves. The linear system of
cubics through the seven points is generated by the cubics

x0x1(x0 + x1) = 0, x0x2(x0 + x2) = 0, x1x2(x1 + x2) = 0.

It defines a regular map of X to itself by interchanging the sets A and
B. Note that the map is of degree 2 and inseparable. So it is ‘almost a
switch’ since it is bijective on the set of points X(F2). We shall discuss
later a different realization of the Fano plane by curves on a K3 surface
which realizes a switch.

It is known the Fano plane can be realized by lines and hyperplanes
in P4(R) ([6]). It is not known whether this is possible for other finite
projective planes.

6.5. 83-configuration. There is a unique abstract line-point 83-configu
ration. It is called the Möbius-Kantor configuration. Here is its Levi
graph (see [9]):

Figure 6.

A linear realization of the Möbius-Kantor configuration can be ob-
tained from the Hesse (123, 94)-configuration by deleting one inflection
point and the four lines to which it is incident (see [36]).

6.6. 93-configurations. There are three non-isomorphic line-point ab-
stract (9, 3)-configurations (see [25],[36]). All of them are realized by
points and lines in the plane.
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The first 93-configuration is the Brianchon-Pascal configuration.

Figure 7.

It admits a realization by three diagonals and six sides of a hexagon
ABCDEF such that the sides AB, CD, EF intersect at a point v and
the sides BC, DE, FA intersect at a point b. The Brianchon Theorem
asserts that the diagonals intersect at a point c. This gives us 9 lines
and nine points (six vertices and the points a, b, c).

The Brianchon-Pascal configuration is isomorphic to its dual realiza-
tion:

Figure 8.

The Pascal Theorem asserts that the points A, B, C are on a line
(the Pascal line).

The Brianchon configuration is isomorphic to the Ceva configuration
for n = 3. So, its symmetry group is isomorphic to the Hesse group.

Here are the pictures of other two 93-configurations.
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Figure 9.

To see that these three configurations are not isomorphic one argues
as follows. For any configuration let S be the set of pairs x, y ∈ A
such that R(x) ∩ R(y) = ∅. We say that two elements x, y in A
are S-equivalent if either x = y or there exists a sequence of pairs
s1 = (x, x1), s2 = (x1, x2), . . . , sn = (xn−1, y) in S. Clearly this is an
equivalence relation. Also it is clear that any isomorphism of configu-
rations sends an S-equivalence class to an S-equivalence class.

In the examples above, the first configuration has three S-equivalence
classes, each consists of 3 elements. The second configuration consists
of one S-equivalence class. The third configuration has 2 equivalence
classes, of 6 and 3 elements.

The first two configurations are regular. The configuration of third
type is obviously non-regular (in a regular configuration all S-equivalence
classes consist of the same number of elements).

6.7. 103-configurations. We have already described a realiziation of
a Desargues 103-configuration by points and lines on a projective plane
over a field of arbitrary characteristic. Another realization of this con-
figuration is as follows. It is known that a general cubic surface can
be written as a sum of 5 cubes of linear forms. The locus of the linear
forms form the Sylvester pentahedron associated to the cubic surface.
The Hessian surface is a quartic which contains the 10 edges of this pen-
tahedron (i.e. the lines of intersection of pairs of the planes) and has
10 nodes corresponding to the vertices of the pentahedron. A minimal
resolution of the Hessian quartic is a K3 surface with two sets of ten
(−2)-curves forming a 103-configuration isomorphic to the Desargues
configuration.

The Brianchon Theorem admits another version which asserts that
the diagonals of a hexagon circumscribed about an irreducible conic
intersect at one point. Its dual Pascal theorem asserts that three pairs
of opposite sides of a hexagon inscribed in an irreducible conic intersect
at three collinear points.
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Both versions of the Brianchon Theorem can be seen by projecting
a hexagon formed by rulings of a quadric from either a point on the
quadric or from a point outside the quadric (see [25]).

The corresponding pictures are called Pascal Hexagrams:

Figure 10.

Thus if we chose a hexagon which is inscribed in a conic C1 and also
circumscribed about another conic C2 (the conics are called Poncelet
6-related), we can apply both theorems to obtain a 103-configuration
isomorphic to the Desargues configuration.

There are 10 non-isomorphic abstract line-point 103-configurations.
Only one of them cannot be realized in the complex projective plane.
This result is due to S. Kantor [31] (see a modern proof in [5]). Here
is a regular self-dual 103-configuration which is not isomorphic to the
Desargues configuration.

Figure 11.

The number of non-isomorphic abstract line-point (113)-configurations
is equal to 31 ([37], [11]) and for (123)-configurations is equal to 228
([12]).



ABSTRACT CONFIGURATIONS IN ALGEBRAIC GEOMETRY 19

7. The Reye (124, 163)-configuration

7.1. The octahedron configuration. The first construction is due
to T. Reye [40], p.234. Consider a cube in R3. Let A be the set of 16
lines in P3(R) which consists of 12 edges and 4 diagonals of the cube.
Let B be the set of 12 points in P3(R) which consists of 8 vertices of
the cube and 4 vertices of the tetrahedron formed by the intersection
point of the diagonals and three points at infinity where the edges
of the cube intersect. Each point from B belongs to four lines from
B. Each line from B contains three points from B. This defines a
(124, 163)-configuration.

Figure 12.

7.2. A net of diagonal quadrics. Here is another way to define this
configuration. Consider a net N of quadrics in P3(C) spanned by three
diagonal quadrics

(7.1) Q1 :

3
∑

i=0

x2
i = 0, Q2 :

3
∑

i=0

aix
2
i , Q3 :

3
∑

i=0

bix
2
i = 0.

We assume that all 3 × 3 minors of the matrix




1 1 1 1
a0 a1 a2 a3

b0 b1 b2 b3





are nonzero.
Let H := det(λQ1 + µQ2 + γQ3) = 0 be the discriminant curve of

the net N . It consists of four lines in general linear position. The six
intersection points of the lines correspond to 6 reducible quadrics in N .
Each such a quadric consists of two planes intersecting along an edge
of the coordinate tetrahedron T . Let A1, . . . , A4 be the vertices of T
and let Qij = Pij ∪P ′

ij be the reducible quadric from N containing the
edge 〈Ai, Aj〉. The set of 8 base points of the net lie by four in each
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plane Pij, P
′
ij. Let 〈Ai, Aj〉 and 〈Ak, Al〉 be two opposite edges. The

quadric Qij intersects 〈Ak, Al〉 at two points pkl, p
′
kl and the quadric Qkl

intersects 〈Ai, Aj〉 at two points pij, p
′
ij. The eight base points of N lie

by two on the four lines 〈pij, pkl〉, 〈pij, p
′
kl〉, 〈p

′
ij, pkl〉, 〈p′ij, p

′
kl〉. The three

pairs of opposite edges give us 12 lines which together with eight base
points form a (83, 122)-configuration isomorphic to the configuration
of vertices and edges of a parallelepiped Π. Let Qij , Qik, Qil be three
reducible quadrics from N containing a vertex Ai. Each pair intersects
along the same set of 4 lines which join Ai with two base points. Alto-
gether we find 16 lines which contain by three the 12 singular points of
the cubic complex of lines and form a (124, 163)-configuration isomor-
phic to the octahedron configuration.

7.3. The Hesse-Salmon configuration. Consider now the projec-
tion of the Reye configuration to the plane from a general point in the
space. We get a line-point (124, 163)-configuration in the plane. We
will show that it is isomorphic to the following Hesse-Salmon config-

uration ([23],[42], [47],[9]). Let C be a nonsingular plane cubic curve.
Take a line which intersects C at three points a, b, c. The pencil of lines
through each point pi contains 4 tangent lines to C. Let

(A1, A2, A3, A4), (B1, B2, B3, B4), (C1, C2, C3, C4),

be the three sets of four points of contact. Fix a group law on C by
taking one of the inflection points as the zero point. Then

a + b + c = 0, 2Ai + a = 0, 2Bi + b = 0, 2Ci + c = 0, i = 1, 2, 3.

We can write

A2 = A1 + α, A3 = A1 + β, A4 = A1 + α + β,

where α, β are two distinct 2-torsion points on C. After reordering, if
needed, we can write

B2 = B1 + β, B3 = B1 + α + β, B4 = B1 + α,

C2 = C1 + α + β, C3 = C1 + α, C4 = C1 + β.

Hence, we obtain that

A1 + B1 + C1 = A1 + B2 + C4= A1 + B3 + C2 = A1 + B4 + C3=0(7.2)

A2 + B1 + C3 = A2 + B2 + C2= A2 + B3 + C4 = A2 + B4 + C1=0,

A3 + B1 + C4 = A3 + B2 + C1= A3 + B3 + C3 = A3 + B4 + C2=0,

A4 + B1 + C2 = A4 + B2 + C3= A4 + B3 + C1 = A4 + B4 + C4=0

This shows that the 12 contact points lie on 16 lines forming a (124, 163)-
configuration.
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7.4. Let us now show that the Reye configuration is isomorphic to the
Hesse-Salmon configuration. We have to recall a few constructions from
the theory of linear systems of quadrics. Let N be the net of quadrics
spanned by the quadrics from (7.1). Let G1,3 be the Grassmannian
of lines in P3 and X be the set of lines l ∈ G1,3 such that there exists
Q ∈ N containing l. Let Di be the divisors of bi-degree (1, 1) in P3×P3

defined by the symmetric bilinear forms associated to the quadrics Qi.
The intersection D1 ∩D2 ∩D3 is a 3-fold Y in P3 × P3. The variety X
is the closure of the set of lines 〈x, y〉, where (x, y) ∈ Y, x 6= y. Let π
be a general plane in P3. Restricting quadrics from N to π we obtain
a net of conics in P2. It is easy to see that set of lines in π contained
in a conic from this net is a nonsingular plane cubic in the dual plane.
Thus the number of lines in π passing through a fixed general point
is equal to 3. This shows that X is a cubic complex in G1,3, i.e., it is
cut out by a cubic hypersurface in the Plücker embedding of G1,3. For
any x ∈ X let K(x) be the set of lines in X which contain x. This
is a plane section of X, and hence is a plane cubic curve. Thus the
union of lines from K(x) form a cubic cone with vertex at x. A point
x ∈ P3 is called a singular point of a line complex if each line through
this point belongs to the complex. In our cubic complex X there are
12 singular points. They are the eight base points of the pencil and
the four vertices of the coordinate tetrahedron T .

Now consider projection from a general point x in P3. The lines
in K(x) project to a nonsingular plane cubic C. Since K(x) contains
the lines joining x with a singular point of X, we see that the projec-
tions of the 12 singular points lie on C. Let l1, l2, l3, l4 be four lines
among the sixteen lines which contain the vertex A1. Let B1, C1 be the
base points lying on l1, B2, C4 be the base points lying on l2, B3, C2

be the base points lying on l3, and B4, C3 be the base points lying
on l4. We assume that no two of the Ci’s and no two of the Bi’s
lie on the same edge of the parallelepiped Π. Then we may assume
that the lines 〈B1, C3〉, 〈B2, C2〉, 〈B3, C4〉, 〈B4, C1〉 intersect at A2, the
lines 〈B1, C4〉, 〈B2, C1〉, 〈B3, C3〉, 〈B4, C2〉 intersect at A3, and the lines
〈B1, C2〉, 〈B2, C3〉, 〈B3, C1〉, 〈B4, C4〉 intersect at A4.

If we use the group law on the cubic C, we may assume that equations
(7.2) are satisfied. Now the equations

A1 + B3 + C2 = A1 + B2 + C4 = A2 + B2 + C2 = A2 + B3 + C4 = 0

imply that 2A1 = 2A2, and similarly we get 2A1 = 2A3 = 2A4. This
shows that the tangent lines to C at the points A1, A2, A3, A4 intersect
at some point a ∈ C. In the same way we obtain that the tangent lines
at the points Bi intersect at some b ∈ C and the tangent lines at the
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points Ci intersect at some point c ∈ C. We get 2A1 +a = 0, 2B1 + b =
0, 2C1 + c = 0, and the first equation in (7.2) gives a + b + c = 0, i.e.
the points a, b, c are collinear. This proves that the projection of the
Reye configuration is equal to the Hesse-Salmon configuration.

7.5. Symmetries. The group of abstract symmetries is isomorphic to
the octahedron group of order 24. In is realized in the octahedron re-
alization. The group of symmetries of the net of quadrics realizations
is isomorphic to the group of order 8 generated by projective trans-
formations xi 7→ ±xi. The group of symmetries of the Hesse-Salmon
realization is trivial.

8. vv−1-configurations

8.1. A vv−1-configuration is obviously unique and is not a line-point
abstract configuration. The proper symmetry group of this configura-
tion is isomorphic to the permutation group Sa. There is also a duality
defined by switching a point x ∈ A with the unique point y from B
such that x 6∈ R(y). The configuration can be realized by points and
hyperplanes in P

a−1
K by taking for A a set of v points in general position

and taking for B the set of hyperplanes spanned by all points except
one.

8.2. The double-six. This is (65)-configuration realized by a double-
six of lines on a nonsingular cubic surface. The full group of symmetry
of this configuration is the double extension of S6. It is generated by
permutation of lines in one family and a switch. In the full group of
symmetries of 27 lines on a cubic surface this is the subgroup of W (E6)
of index 36 which fixes a subset {α,−α}, where α is a positive root.
One can realize the full symmetry group over a field of characteristic 2
by considering the Fermat cubic surface

x3
0 + x3

1 + x3
2 + x2

3 = 0.

Its automorphism group is isomorphic to the Weyl group W (E6) (see
[26]), Theorem 20.3.1).

8.3. The Fano (109)-configuration. Let X be an Enriques surface
over an algebraically closed field K. Assume that X has no smooth
rational curves. Then X can be embedded in P5 as a surface of degree
10 (a Fano model, see [16]). The surface X contains 10 elliptic pencils
|2Fi| such that Fi · Fj = 1 if i 6= j. The divisor class of a hyperplane
section H of X satisfies 3H ≡ F1 + . . . + F10.

Assume that the characteristic of K is not equal to 2. Each elliptic
fibration contains two double fibres 2Fi and 2F ′

i . The image of the
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curves Fi, Fi’s are plane cubics. Let us choose one of the double fibres
in each fibration and denote by A the set of the planes in P5 spanned by
the corresponding fibres. We take for B the set of planes corresponding
to the remaining 10 double fibres. We get a (109)-configuration formed
by the sets A and B and the incidence relation defined by (π, π′) ∈ R
if π ∩ π′ is a one-point set.

If K is of characteristic 2 and KX = 0, then Fi = F ′
i . In this case

we take A = B.
In general, the automorphism group of the realization is trivial. It

is an interesting problem to find X realizing non-trivial symmetries of
the configuration.

8.4. Coble’s configurations. A generalization of a double-six is due
to A. Coble ([8]). It is a (vv−1)-configuration, where v = Nn =

(

n+2
2

)

.
One takes a set Σ of Nn general points Σ = {p1, . . . , pNn

} in the projec-
tive plane over an algebraically closed field of any characteristic. For
each points pj there is a unique smooth curve Cj of degree n which
passes through the set Σ\ {pj}. Let Xn be the blow-up of P2 along the
subset Σ. We take A to be the set of exceptional curves Ej , and B to
be the set of proper transforms C̄j of the curves Cj. Note that

C̄2
j = C̄j · KXn

= n(n − 3)/2.

Note that the linear system of curves of degree n + 1 through the set
A maps X isomorphically to a surface Wn of degree Nn−1 in Pn+1. It
is called a White surface. Clearly, W1

∼= P2 and W2 is a cubic surface.
The image of the proper inverse transform of Cj in Xn is mapped to a
curve in Pn+1 lying in a linear subspace of dimension n−1. The image
of each exceptional curve is a line in Wn. Thus our configuration is
isomorphic to a configuration of lines and subspaces of dimension n−1
in Pn+1. Unfortunately, when n > 2, no symmetry of our configuration
is realized by an automorphism of the surface Wn.

9. The Cremona-Richmond 153-configuration

9.1. This configuration can be realized in P4
K as follows (see [41]).

Take 6 points p1, . . . , p6 in general linear position. For any subset I
of the set [1, 6] = {1, . . . , 6} let ΠI be the linear subspace spanned
by the points pi, i ∈ I. We have 15 “diagonal” points pI = ΠI ∩ ΠĪ ,
where #I = 2, and the bar denotes the complementary set. The points
pI , pJ , pK with [1, 6] = I ∪ J ∪ K lie on the “transversal line” ℓI,J,K ,
the intersection line of the hyperplanes ΠĪ , ΠJ̄ , ΠK̄ . The 15 diagonal
points and 15 transversal lines form a 153-configuration. By projecting
from a general line, we get a line-point plane 153-configuration.
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9.2. The dual configuration. Let us identify the dual projective
space P̌4 with the hyperplane V ∼= P4 defined by the equation x0 +
· · · + x5 = 0 in P

5. Let the dual of points pi to be the hyperplanes in
V defined by the additional equations xi = 0. Then the dual of the
diagonal points are the hyperplanes Hab defined by the additional equa-
tions xa + xb = 0, and the dual of transversals are the planes πab,cd,ef

defined by the additional equations xa + xb = xc + xd = xe + xf = 0.
Let S6 act in V by permuting the coordinates xi. This is the pro-
jective representation of S6 defined by the natural 5-dimensional irre-
ducible representation of S6. The dual of the diagonal points are the
hyperplanes of fixed points of 15 transpositions (ab). The dual of the
transversals are the planes of fixed points of 15 permutations of cycle
type (ab)(cd)(df). The group S6 is isomorphic to the proper symmetry
group of the arrangement via its natural action on itself by conjuga-
tion. The full symmetry group of the arrangement is isomorphic to the
group of outer automorphisms of S6.

9.3. The Segre cubic. The Segre cubic S3 is defined by the equa-
tion x3

0 + · · · + x3
5 = 0 in V . It admits a nice moduli interpreta-

tion (see [7], [15]). It has 10 ordinary double points with coordinates
(1, 1, 1,−1,−1, 1) and their permutations. Each plane πab,cd,ef is con-
tained in S3. The hyperplane Hab cuts out in S3 the union of three
planes πab,cd,ef , πab,ce,df , πab,cf,de. Each plane πab,cd,ef contains 4 singular
points, and each singular point is contained in 6 planes. This defines a
(154, 106)-configuration .

9.4. Cubic surfaces. Let S be a cubic surface cut out from S3 by a
hyperplane H : a0x0 + · · · + a5x5 = 0. Assume that the intersection
is transversal so that S is nonsingular. Then H intersects the planes
πab,cd,ef along lines. Thus we have a choice of 15 lines ℓab,cd,ef from the
set of 27 lines on S. The hyperplanes Hab define 15 tritangent planes
Pab of S each containing 3 lines ℓab,cd,ef . Each line is contained in 3
tritangent planes. Thus we get a realization of our 153-configuration
as a subconfiguration of the configuration (275, 453) of 27 lines and 45
tritangent planes. The lines ℓab,cd,ef and their points of intersection
form a (156, 452)-subconfiguration of the (2710, 1352)-configuration of
lines and points on a cubic surface (one assumes that the cubic surface
does not contain Eckardt points).

Two tritangent planes Pij and Pmn form a Cremona pair (see [40],
p. 218) if they do not intersect along one of the 15 lines ℓab,cd,ef , or,
equivalently, if {i, j}∩{m, n} 6= ∅. Each plane Pij enters in 8 Cremona
pairs. This implies that there are 60 Cremona pairs. The intersection
line of two planes from a Cremona pair is called a Pascal line. Thus
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tritangent planes and Pascal lines form a (158, 602)-configuration. It is
cut out by H from the dual plane of a line joining two diagonal points
not on a transversal line.

Each Pascal line intersects the cubic surface S in 3 points. Each
point is the intersection point of two lines on S lying in each of the
tritangent planes from the pair. Thus through each of 45 intersections
points of lines ℓab,cd,ef passes four Pascal lines. This defines a (454, 603)-
configuration. The duals of the 2-faces ΠI , #I = 3, is a set of 20 lines
in V . Intersecting with the hyperplane H defines a set of 20 points in
H (Steiner points). The Pascal lines meet by threes in twenty Steiner
points. This defines a (601, 203)-configuration.

The duals of the edges ΠI , #I = 2, is a set of 15 planes in V . Each
plane contains 4 duals of the 2-faces. Intersecting with the hyperplane
H we find 15 lines in H (Plücker lines). Each Plücker line contains 4
Steiner points. We get a (154, 203)-configuration of lines and points in
P

3.
The set of 60 Pascal lines is divided into 6 sets of 10 lines. Each set

of ten lines is equal to the set Pa of lines Hab ∩ Hac with a fixed and
c, d ∈ [1, 6] \ {a}. The lines from Pa are the ten edges of the Sylvester
pentahedron of the cubic surface S. It forms a 103-subconfiguration of
the (454, 603)-configuration. It is isomorphic to the Desargues configu-
ration.

Consider the projection of the cubic surface to the plane from a
general point in P3. We get a set L of 15 lines (the projections of the
15 lines on the cubic surface), a set Pas of 60 lines (the projections of
Pascal lines), a set Plu of 15 lines (the projections of Plücker lines),
a set St of 20 points (the projections of 20 Steiner points), a set I of
45 points (the projections sof intersection points of the 15 lines on the
cubic surface), a set T of 15 triangles formed by the projection of three
lines in 15 tritangent planes.

The 6 lines from a Cremona pair of tritangents form a hexagon such
that its opposite sides intersect at three points lying on a line (the
projection of the Pascal line). So this is similar to the Pascal Hexagram,
although there is no conic which is inscribed in the hexagon!

The following table summarizes the configurations derived from the
Cremona-Richardson configurations in P3:
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L Pas Plu St I T
L (1524, 606) (156, 452) 153

Pas (606, 1524) (601, 203) (603, 454) (602, 158)
Plu (154, 203

St (203, 601) (203, 154)
I (452, 156) (454, 603)
T 153 (158, 602)

Let set of 15 lines ℓab,cd,ef is complementary to a double-six of lines.
In fact, it is easy to see that no three of the remaining 12 lines can be
coplanar, and this characterizes a double-six. A general cubic surface
can be written in 36 ways as a hyperplane section of the Segre cubic
(or equivalently writing its equation in Cremona’s hexagonal form:

5
∑

i=0

l3i =

5
∑

i=0

li = 0,

where li are linear forms in variables z0, z1, z2, z3.)

9.5. Nodal cubic. Let H be a hyperplane which is tangent to the
Segre cubic at one nonsingular point. It cuts out a cubic surface with
a node. There are 6 lines passing through the node. The remaining 15
lines are the lines ℓab,cd,ef . Projecting from the node we get a conic with
6 points on it. The blow-up of these six points is a minimal resolution
of the cubic. The 15 lines join the six points by pairs. There are 60
hexagons whose sides belong to this set. Each hexagon defines the
Pascal Hexagram.

9.6. The Segre quartic. Let S4 ⊂ P4
K be the dual quartic of the

Segre cubic (also known as the Igusa quartic because of its modular
interpretation given by J. Igusa, see [14]). It contains the transversals
as its double lines. The dual of a singular point of the Segre cubic is
a hyperplane (called a cardinal space in [41]). They are parametrized
by pairs of complementary subsets of [1, 6] of cardinality 3. A cardinal
space C(I) corresponding to I, Ī contains 6 transversal lines connecting
9 diagonal points pA, where A 6⊂ I, A 6⊂ Ī. For example, C(123)
contains the transversal lines

ℓ14,25,36, ℓ14,26,35, ℓ15,24,36, ℓ15,26,34, ℓ16,25,34, ℓ16,24,35.

The 6 transversals in a cardinal space lie on a unique quadric in this
space contained in the Segre quartic (a cardinal quadric). Each transver-
sal line lies in 4 cardinal quadrics. A pair of skew transversal lines lies in
a unique quadric, a pair of coplanar transversal lines lie in two quadrics.
Transversal lines and cardinal spaces define a (154, 106)-configuration
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which is dual to the (154, 106)-configuration of nodes and planes coming
from the Segre cubic.

In the interpretation of S4 as a compactification of the moduli space
of principally polarized abelian surfaces of level 2, the diagonal points
correspond to 0-dimensional boundary components and the transversal
lines correspond to the closures of 1-dimensional boundary components.
We encounter the 153-configuration as the familiar configuration of
isotropic planes and lines in the symplectic space F4

2 (see [20]).
We have 20 planes ΠI , #I = 3. Each plane contains 3 lines joining

two diagonal points on two edges ΠJ , J ⊂ I (also called Pascal lines
in [41]). Through each diagonal point pab passes three transversals
ℓab,cd,ef , ℓab,ce,df , ℓab,cf,de. Each pair spans a plane which contains 4 Pas-
cal lines (e.g. the plane spanned by the pair ℓab,cd,ef , ℓab,ce,df contains the
Pascal lines 〈pce, pcd〉, 〈pcd, pdf〉, 〈pef , pce〉, 〈pdf , pef〉). The two transver-
sals contained in the plane belong to a cardinal hyperplane. Thus we
encounter the (453, 604)-configuration of lines and planes which is dual
to the (453, 604)-configuration considered in 9.4.

The intersection of S4 with a transversal hyperplane H is a quartic
surface with 15 nodes. There are 10 sets of six coplanar nodes ly-
ing on a conic which correspond to cardinal quadrics. This defines a
point-plane (156, 104)-configuration. The hyperplane H intersects the
60 Pascal lines at 60 different points (Pascal points). Also H intersects
the 20 planes ΠI , #I = 3 at 20 lines (the Steiner lines). Each Steiner
line contains 3 Pascal points. Each Pascal point is contained in 4
Steiner lines. Thus Pascal points and Steiner lines define a (601, 203)-
configuration. The edges ΠI , #I = 2 define 15 points, the Plücker
points lying by three in 20 Steiner lines. Through each Plücker point
passes 4 Steiner lines. This defines a (154, 203)-configuration of lines
and planes in P

3. We have 45 lines joining two nodes which contain 4
Pascal points (diagonal lines). Other 60 pairs of nodes are joined by
lines with no Pascal points on it.

Let N be the set of the 15 nodes of the quartic, C be the set of the
projections of the 10 conics, Pas be the set of the 60 Pascal points,
St be the set of the 20 Steiner lines, Plu be the set of the 15 Plücker
planes and D be the set of the diagonal lines.

The following table summarizes the configurations derived from the
Cremona-Richardson configurations in P

3:
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N C Pas St Plu D
N (154, 106) (156, 452)
C (106, 154) (109, 452)
Pas (601, 203) (603, 454)
St (203, 601) (203, 154)
Plu (154, 203)
D (452, 156) (452, 109) (454, 603)

9.7. Finite geometry interpretation. Let V = F
[1,6]
2 be the linear

space of functions [1, 6] → F2 identified with subsets of [1, 6]. We have

A+B = A∪B \A∩B. We equip V = F
[1,6]
2 with a symmetric bilinear

form defined by

(9.1) 〈A, B〉 = #(A ∩ B) mod 2.

Let V0 be the subspace of subsets of even cardinality. The restric-
tion of the symmetric form to V0 is degenerate. Its radical R is one-
dimensional subspace {∅, [1, 6]}. Let W = V0/R. It is a 4-dimensional
vector space over F2 equipped with a non-degenerate symmetric bi-
linear form e : W × W → F2 induced by (9.1). Since e(A, A) = 0
for any subset A of even cardinality, the symmetric form e is a non-
degenerate symplectic form. It follows from (2.2) that there are 25
planes in W . Fifteen of them are isotropic (i.e. the restriction of
e to the subspace is trivial). Each isotropic plane consists of 4 el-
ements represented by subsets ∅, {a, b}, {c, d}, {e, f}, where [1, 6] =
{a, b, c, d, e, f}. Thus the transversals ℓab,cd,ef correspond to isotropic
planes. We have 10 anisotropic (i.e., non-isotropic) planes represented
by sets {∅, {a, b}, {b, c}, {a, c}, where {a, b, c} is a subset of 3 elements in
[1, 6]. Of course, replacing {a, b, c} by the complementary set does not
change the plane. Thus cardinal subspaces correspond to anisotropic
planes. Also, observe that non-zero elements which can be represented
by 2-elements subsets I of W correspond to diagonal points pI .

We denote an isotropic plane by Lab,cd,ef and an anisotropic plane
by Labc. It is clear that

Lab,cd,ef ∩ Labc = {0} ⇔ ℓab,cd,ef ⊂ C(abc).

I ∈ Lab,cd,ef ⇔ pI ∈ ℓab,cd,ef .

This gives a finite geometry interpretation of the (154, 106)-configuration
formed by transversals and cardinal spaces and 153-configuration of di-
agonal points and transversals. Notice that the symmetry group S6 of
the configurations is isomorphic to the symplectic group Sp(4, F2) via
its natural action on subsets of [1, 6].
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10. Kummer configurations

10.1. Kummer surface. Intersecting the Segre quartic with a hyper-
plane tangent to S4 at its nonsingular point defines a quartic with 16
nodes. It is known ([28]) that each 16-nodal quartic surface in P3

K can
be obtained in this way (a modern proof of this classical fact can be
found in [20]). It is isomorphic to the Kummer variety of the Jacobian
of a nonsingular curve of genus 2. Together with 10 conics coming from
the cardinal hyperplanes we get 16 conics of the Kummer surface which
are cut out by a plane (a trope). Each conic contains 6 nodes, and each
node is contained in 6 tropes. Each pair of nodes is contained in two
tropes. This is the famous Kummer 166-configuration.

The Kummer configuration is a symmetric design of type λ = 2
(a biplane). It follows from equation (2.1) that for each vk-biplane,

v = 1 + k(k−1)
2

. There are three non-isomorphic biplanes with v = 16
(see [21],[29]). The Kummer biplane has the largest symmetry group.

Projecting from the new node, we obtain the familiar configuration
of 6 lines in the plane tangent to a conic C. The images of the 15
nodes are the intersection points of these lines. The images of the 10
conics are the conics passing through six intersection points no two of
which lie on the same line. The six points form the set of vertices of
a hexagon which circumscribe C. The projection of the 45 diagonals
are the diagonals of the hexagons, three in each hexagon. The Pascal
points are the intersection points of three diagonals in the same hexagon
which agrees with the Pascal Theorem.

10.2. Kummer variety. Let A be an abelian variety of dimension g
over an algebraically closed field K of characteristic 6= 2. The Kummer

variety of A is defined to be the quotient Kum(A) = A/(ι), where ι is
the automorphism a 7→ −a. It is a normal algebraic variety with 22g

singular points corresponding to the fixed points of ι. Each singular
point is formally isomorphic to the singular point of the affine cone
over the Veronese variety v2(P

g−1).
Assume that A admits an irreducible principal polarization defined

by an irreducible divisor Θ with h0(Θ) = 1 (e.g. is A is a Jacobian).
We will also assume that Θ is symmetric, i.e., ι(Θ) = Θ. The linear
system |2Θ| maps A to P2g−1 and factors through an embedding

j : Kum(A) →֒ P
2g−1

([35]). The degree of the variety j(Kum(A)) in P2g−1 is equal to 2g−1g!.
When g = 2, we get a Kummer quartic surface in P

3 with 16 nodes.
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10.3. The Kummer 22g
2g−1(2g−1)-configurations. For every 2-torsion

point x ∈ A we can define the translate Θa = ta(Θ), where tx : a 7→
a + x is the translation automorphism. It is known that Θ passes
through 2g−1(2g −1) 2-torsion points with odd multiplicity. Let A = B
and R be the relation on A × A defined by (x, y) ∈ A if and only if
multxΘy is odd. This defines a 22g

2g−1(2g−1)-configuration.

Consider an embedding j : Kum(A) →֒ P2g−1. The image of 2-
torsion points is a set of 2g points in the projective space. The image
of a divisor Θa is a subvariety of j(Kum(A)) which is cut out by an
everywhere tangent hyperplane (a trope). So we have 22g points and
hyperplanes in P2g−1 realizing the Kummer 22g

2g−1(2g−1)-configuration.

10.4. Finite geometry interpretation. We generalize the construc-
tion from 9.7. Let Wg be the linear space of dimension 2g formed by
subsets of even cardinality of the set [1, 2g] = {1, . . . , 2g} with com-
plementary subsets identified. It is equipped with a nondegenerate
symplectic form eg defined by 9.1. Let Qg be set of subsets of [1, 2g] of
cardinality ≡ g + 1 mod 2 with complementary subsets identified. It
has a natural structure of an affine space over Wg with respect to the
symmetric sum of subsets. We will identify Qg with quadratic forms
on Wg by setting, for any S ∈ Qg, and any T ∈ Wg,

qS(T ) =
1

2
#T + #T ∩ S mod 2 =

1

2
#T + eg(S, T ) mod 2.

The associated symmetric bilinear form of qS coincides with eg. Con-
sider the relation R ⊂ Wg × Qg defined by

(T, S) ∈ R ⇔ qS(T ) =

{

1 if #S ≡ g + 1 mod 4,

0 if #S ≡ g − 1 mod 4.

Recall that there are two types of nondegenerate quadratic forms on
(F2)

2g. They are distinguished by the number of isotropic vectors
x ∈ F

2g
2 . For the even type this number is equal to 2g−1(2g + 1) and

for the odd type it is equal to 2g−1(2g − 1). One checks that the qua-
dratic form qS is of even type if and only if #S ≡ g + 1 mod 4. This
implies that #R(S) = 2g−1(2g − 1) for any S ∈ Qg. The relation
R has the obvious symmetry group isomorphic to Sp(2g, F2). This
implies that #R(T ) = 2g−1(2g − 1) for any T ∈ Wg. Thus we get

a 22g
2g−1(2g−1)-configuration with symmetry group Sp(2g, F2). There is

more symmetry. Let us see that translations by elements from Wg are
symmetries of the configuration. For any T ∈ Wg, we have

qS+T (T ′) = qS(T ′) + eg(S + T, T ′) + eg(S, T ′) = qS(T ′) + eg(T, T ′).
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Thus

qS+T (T + T ′) = qS(T + T ′) + eg(T, T + T ′) =

qS(T ) + qS(T ′) + eg(T, T ′) + eg(T, T + T ′) = qS(T ) + qS(T ′).

Obviously, #(S + T ) − #S = #T − 2#(S ∩ T ). Suppose #T ≡ 0
mod 4. Then #(S+T )−#S = 2#(S∩T ) mod 4 and qS(T ) = #(S∩T )
mod 2. This implies that (T ′, S) ∈ R if and only if (T +T ′, S +T ) ∈ R.

Suppose #T ≡ 2 mod 4. Then #(S + T ) − #S = 2 + 2#(S ∩ T )
mod 4 and qS(T ) = 1 + #(S ∩ T ) mod 2. Again this implies that
(T ′, S) ∈ R if and only if (T + T ′, S + T ) ∈ R. This checks that Wg

is a subgroup of the group of symmetries. Thus, we found that the
semi-direct product G = F

2g
2 ⋊ Sp(2g, F2) is a group of symmetries.

It is proven by A. Krazer [34] (for other expositions of this result
see [7], [15], [38]) that the obtained configuration is isomorphic to the
Kummer configuration.

10.5. Realizations of symmetries. The group of symmetries of the
Kummer configuration defined by translations can be realized by pro-
jective transformations of the space P

2g−1. Recall the Schrödinger rep-
resentation of the group F2

p in Pn−1 which we discussed in 4.2. This can

be generalized to a projective representation of F
2g
p in P

pg−1. First we
define a central extension Hg(p) of the group F2g

p with the center iso-
morphic to the group µp of complex pth roots of unity (the Heisenberg

group). It is defined by the following group law on the set F2g
p × Fp:

(v, α) · (w, β) = (v + w, e2π〈v,w〉αβ),

where 〈, 〉 : F2g
p × F2g

p → Fp is the standard symplectic form defined

by the matrix

(

0g Ig

−Ig 0g

)

. The center C is the subgroup generated by

(0, 1), the quotient group is isomorphic to F2g
p . Let (e1, . . . , e2g) be the

standard basis in F2g
p . Let A be the subspace spanned by the first g

unit vectors, and B be the subspace spanned by the last g unit vectors.
These are maximal isotropic subspaces. Let Ā = {(v, 1), v ∈ A}, B̄ =
{(w, 1), w ∈ B}. These are subgroups of Hg(p) isomorphic to Fg

p. For

any (v, 1) ∈ Ā and (w, 1) ∈ B̄, we have

[(v, 1), (w, 1)] = (0, e2πi〈v,w〉).

Let us write any element in Hg(p) as a triple (x, y, α), where x ∈ Ā, y ∈
B̄ and α ∈ C. The Schrödinger linear representation of Hg(p) in kpg

is
defined by the formula

(

(x, y, α) · φ
)

(z) = αe2πi〈z,y〉φ(z + x),
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where we identify the linear space Kpg

with the space of K-valued
functions on the set A = Fg

p. The Schrödinger projective representation

in Ppg−1 is the corresponding representation of Hg(p) in P(Kpg

). It is
clear that the center acts trivially in the projective space, so we have
a projective representation of the group F2g

p in Ppg−1.
Assume p = 2. The group of 2-torsion points of an abelian variety A

of dimension g is isomorphic to F
2g
2 . It is also equipped with a canonical

symplectic form defined by the Weil pairing. This allows to define its
center extension isomorphic to the Heisenberg group Hg(2) (the theta

group). If Θ is a divisor on A defining a principal polarization, then the
theta group acts linearly in the space L(2Θ) = H0(A,OA(2Θ)) via its
natural action on A by translations. This defines a Hg(2)-equivariant
embedding of the Kummer variety in P2g−1 (see [35], Chapter 6). Thus
the group F

2g
2 acts on the Kummer variety and hence is realized as

a group of symmetries of the Kummer configuration. One can show
that this action is isomorphic to the action of Wg on the Kummer
configuration defined in 10.4.

10.6. The Kummer designs. The Kummer configuration is a sym-
metric design of type λ = 2g−1(2g−1−1). Let us prove this by using the
construction from the previous section. Let T, T ′ be a pair of elements
of Wg. Since Sp(2g, F2) is 2-transitive on the set of pair of nonzero
vectors A, B with given value of eg(A, B), it suffices to consider the
following two cases:

Case 1: T = {1, 2}, T ′ = {2, 3}, eg(T, T ′) = 1
Case 2: T = {1, 2}, T ′ = {3, 4}, eg(T, T ′) = 0.
Let λ1 = #R(T ) ∩ R(T ′) in the first case and λ2 = #R(T ) ∩ R(T ′)

in the second case. By symmetry, it is enough to show that λ1 = λ2,
and then λ could be found from equation (2.1).

Consider the first case. Let us count the number of sets S ∈ Qg such
that T, T ′ ∈ R(S). Suppose #S ≡ g + 1 mod 4. Then T, T ′ ∈ R(S) if
and only if #T ∩ S = #T ′ ∩ S = 0 mod 2. This is equivalent to that
S or S̄ does not contain 1, 2, 3. Denote the set of such subsets by P1.
Now suppose that #S ≡ g − 1 mod 4. Then T, T ′ ∈ R(S) if and only
if #T ∩ S = #T ′ ∩ S = 1 mod 2. This is equivalent to that S or S̄
contains 2 and does not contain 1, 3. Denote the set of such subsets by
P2

Consider the second case. Suppose #S ≡ g+1 mod 4. Then T, T ′ ∈
R(S) if and only if #T ∩ S = #T ′ ∩ S = 0 mod 2. This is equivalent
to that S or S̄ does not contain 1, 2, 3, 4 or does not contain {1, 2} but
contains {3, 4}. Denote the set of such subsets by Q1. Now suppose
that #S ≡ g− 1 mod 4. Then T, T ′ ∈ R(S) if and only if S or S̄ does
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not contain 1, contains 2 and one of the numbers 3, 4. Denote the set
of such subsets by Q2.

Let S ∈ P1. We may assume that S ⊂ [4, . . . , 2g + 2]. If 4 6∈ S, then
S ∈ Q1. If 4 ∈ S, then adding 2 to S and one of the numbers from
[5, . . . , 2g + 2] we get an element in Q2. Let S ∈ P2. We may assume
that 2 ∈ P2. If S contains 4, then S ∈ Q2. If 4 6∈ S, then deleting 4
and one of the numbers from [5, . . . , 2g +2] we obtain an element from
Q1. This shows that

λ1 = #P1 + #P2 ≤ λ2 = #Q1 + #Q2.

Similarly, we prove that λ2 ≤ λ1.

10.7. Hadamard designs. The Kummer design is a Hadamard de-

sign. Recall that an Hadamard matrix is a square matrix A of order
n with ±1 whose rows are orthogonal. It is easy to see that n = 4t
is a multiple of 4. By permuting rows and columns, one may assume
that the first column and the first row does not contain −1. Consider
the matrix A′ obtained from A by deleting the first row and the first
column. We take A to be the set of rows of A′ and B the set of columns
of A′. We define the incidence relation by requiring that a row Ai is
incident to the column Bj if the entry aij of A′ is equal to 1. This
defined a symmetric 4t − 12t−1-design of type λ = t − 1. Any design
of this type is obtained from an Hadamard matrix. An example of
an Hadamard design is the Fano plane (t = 2). The Kummer design
is not an Hadamard design however its (−1, 1)-incidence matrix is an
Hadamard matrix with t = 2g−2 (see [32], p.47).

10.8. 2-transitive designs. Note that according to a result of W.
Kantor [33], there are only the following symmetric designs (up to tak-
ing the complementary design) whose symmetry group acts 2-transitively
on the set of points (or blocks):

1) A point-hyperplane design in PG(n, q);
2) The unique Hadamard 115-design with t = 3. Its proper symmetry

group is isomorphic to PGL(2, F11) (see [32], p. 68).
3) A certain 17650 design with λ = 14 constructed by G. Higman

(see [24]). Its proper symmetry group is isomorphic to the Higman-
Sims simple group of order 2932537.11.

4) The Kummer designs.
It is an interesting problem to realize designs 2) and 3) in algebraic

geometry.

10.9. Klein’s 6015-configuration. (see [3], [28]) Consider the Schrödinger
linear representation of the group H2(2) in K4 defined in 10.5. We
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choose the coordinates in K4 such that the unit vectors e1, e2, e3, e4 cor-
respond to the characteristic functions of {0}, {(1, 0)}, {(0, 1)}, {(1, 1)},
respectively. The generators of the subgroups Ā and B̄ act by the for-
mula

(e1, 1) · (z0, z1, z2, z3) = (z1, z0, z3, z2),

(e2, 1) · (z0, z1, z2, z3) = (z2, z3, z0, z1),

(e3, 1) · (z0, z1, z2, z3) = (z0,−z1, z3,−z2),

(e4, 1) · (z0, z1, z2, z3) = (z0, z1,−z3,−z2).

For any g ∈ H2(2)\{1} its set of fixed points is a pair of planes L±
g which

define a pair of skew lines l±g in P3. The decomposition K4 = L+
g + L−

g

is the decomposition into the direct sum of eigensubpaces of g. If
g2 = 1, the eigenvalues are ±1. If g2 = −1, the eigenvalues are ±i.
Let L be any plane in F

2g
2 and L̄ be its preimage in H2(2). If L is

isotropic with respect to 〈, 〉, then all elements in L̄ commute. Thus,
if g, g′ ∈ L̄, g 6= ±g′, the sets of fixed points of g and g′ have common
points, two lines in each plane. This shows that three pairs of skew
lines l±g defined by the nonzero elements from L form a tetrahedron TL.
The opposite edges of the tetrahedron are the fixed lines of a nonzero
element from L.

Two isotropic planes may have either one common nonzero vector in
common (an azygetic pair) or no common nonzero vectors (a syzygetic

pair). The invariant tetrahedra of an azygetic pair have a pair of oppo-
site edges in common. The invariant tetrahedra of a syzygetic pair have
no edges in common. For every isotropic plane L, there are 3 isotropic
pairs L′ which have a fixed common nonzero vector v ∈ L. This shows
that each edge is contained in 3 tetrahedra, so we have 30 edges. Also
we see that no two tetrahedra share a vertex. Thus we have a set A
of 60 vertices and a set B of 60 faces of the 15 tetrahedra. Six faces
pass through an edge (two from each of the three tetrahedra containing
it). Each face contains 3 edges. This defines a (603, 306)-configuration.
Each edge contains 6 vertices (two from each tetrahedra it contains).
Since a face contains 3 edges, each has a common vertex, we have 15
vertices in each face. One can also see that each vertex is contained
in 15 faces. Thus faces and vertices form a 6015-configuration. This is
Klein’s 6015.

If L is anisotropic, the sets of fixed points of nonzero elements have
no common nonzero elements. Thus the corresponding three pairs of
lines are skew. An orthogonal anisotropic plane L⊥ defines another 6
skew lines such that each fix-line defined by L intersects each fix-line
defined by L⊥. Let Q be the unique quadric in P

3 which contains 3
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fix-lines defined by L. Then each fix-line defined by L⊥ must lie in Q.
Then the remaining 3 fix-lines defined by L also must lie in Q. Thus
Q contains 12 fix-lines defined by the pair (L, L⊥). There are 10 such
pairs, so we obtain 10 quadrics. They are called Klein’s fundamental

quadrics.
Consider the tensor square of the Schrödinger linear representation

in the dual space (K4)∗. It decomposes into the direct sum Λ2(K4)∗ ⊕
S2((K4)∗). The center of the Heisenberg group acts identically. So, we
get a linear representation of an abelian group F4

2. It decomposes into
the direct sum of one-dimensional representations. The 10 fundamental
quadrics represent a basis of eigensubspaces in S2((K4)∗). Let ωi, 1 ≤
i ≤ 6, be a basis of eigensubspaces in Λ2(K4)∗ (the six fundamental

complexes). Each defines a polarity, i.e. a linear isomorphism ωi :
K4 → (K4)∗. The Kummer configuration can be obtained as follows.
Take an arbitrary point P ∈ P3. The orbit of P with respect to the
Schrödinger representation gives a set of 16 points. The images of
P under ωi define 6 planes. The polar plane of P with respect to
the fundamental quadrics (defined by the orthogonal subspace of the
corresponding line in K4) define another 10 planes. Thus we get a set
of 16 points and a set of 16 planes. There exists a unique Kummer
surface in P3 which realizes these sets as the set of 16 nodes and 16
tropes.

Recall that each element in Λ2((K4)∗) defines a hyperplane section
of the Grassmannian G1,3 in its Plücker embedding. Thus each subset
of 4 fundamental complexes ωi define a pair of lines in P

3. Together
we get 15 pairs of lines. This is the set of 30 edges of the 15 fun-
damental tetrahedra. In this way the Klein 6015-configuration can be
reconstructed from the six fundamental compexes.

10.10. A Kummer 1610-configuration. A Jacobian Kummer surface
is obtained as the image of the linear system |2Θ| on the Jacobian va-
riety of a genus 2 curve. A minimal nonsingular model of the Kummer
surface of a simple abelian surface with polarization of type (1, 3) ad-
mits an embedding in P3 as a quartic surface with two sets of 16 disjoint
lines forming a symmetric 1610-design of type λ = 5. This surface was
first discovered by M. Traynard in 1907 ([45]) and rediscovered almost
a century later in [3], [39]. The Kummer 166 and 1610 configurations
are complementary to each other.

11. A symmetric realization of P2(Fq)

11.1. Mukai’s realization. We know already that the projective plane
P2(Fq) can be realized by points and lines in P2

F̄q
, or by its blow-up.
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Although all these realizations admit the symmetry group PGL(3, Fq),
none of them admits a switch. The following realization admitting a
switch is due to S. Mukai. Let P

2 = P
2
F̄q

and Xq be a surface in P
2 ×P

2

given by the equations

x0y
q
0 + x1y

q
1 + x2y

q
2 = 0, y0x

q
0 + y1x

q
1 + y2x

q
2 = 0.

It is easy to verify that Xq is a nonsingular minimal surface with

q(Xq) = 0, pg(Xq) =
1

4
q2(q − 1)2, K2

Xq
= 2(q − 2)2(q2 + 1).

Let pi : Xq → P2, i = 1, 2, be the two projections. Let a = (a0, a1, a2) ∈
P2(Fq2). Since

(y0a
q
0 + y1a

q
1 + y2a

q
2)

q = yq
0a

q2

0 + yq
1a

q2

1 + yq
2a

q2

2 = yq
0a0 + yq

1a1 + yq
2a2,

we see that the fibre Ra = p−1
1 (a) is isomorphic to a line in P

2 given
by the equation aq

0T0 + aq
1T1 + aq

2T2 = 0. Thus we obtain a disjoint set
A of q4 + q2 + 1 smooth rational curves Ra in Xq. By the adjunction
formula, R2

i = −q. Similarly, considering the second projection we
obtain another set B of such curves Qb. A curve Ra intersects Qb

if and only if b0a
q
0 + b1a

q
1 + b2a

q
2 = 0, or, equivalently, a0b

q
0 + a1b

q
1 +

a2b
q
2 = 0. Let q = pk and let F : (x0, x1, x2) → (xp

0, x
p
1, x

p
2) be the

Frobenius endomorphism of P2
Fp

. We see that, for any a, b ∈ P2(Fq2),

Ra ∩Qb 6= ∅ if and only if the point Fk(a) lies on the line b0T0 + b1T1 +
b2T2 = 0. This shows that the configuration A∪B is isomorphic to the
configuration PG(2, Fq2) under the map Fk. Of course, it contains the
subconfigurations PG(2, Fpi) for any 1 ≤ i ≤ k.

The group PGL(3, Fq2) acting diagonally on P2 ×P2 together with a
switch defined by the interchanging the factors of P

2 × P
2 realizes the

subgroup of index 2k, where q = pk, of the group of abstract symmetries
of the configuration P2(Fq). The cosets of non-realizable symmetries
are the cosets of the powers of the Frobenius map F.

11.2. The surface X2. In this case the surface X2 is a K3 surface
and the configuration PG(2, F4) is realized by two sets of 21 disjoint
(−2)-curves. This surface is the subject of my joint work with S. Kondo
([17]). We prove that the following properties characterize a K3 surface
X2 over an algebraically closed field of characteristic 2:

(i) X is isomorphic to X2;
(ii) The Picard lattice of X is isomorphic to U ⊥ D20 ;
(iii) X has a jacobian quasi-elliptic fibration with one fiber of type

D̃20 ;
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(iv) X has a quasi-elliptic fibration with the Weierstrass equation

y2 = x3 + t2x + t11;

(v) X has a quasi-elliptic fibration with 5 fibers of type D̃4 and the
group of sections isomorphic to (Z/2)4 ;

(vi) X contains a set A of 21 disjoint (−2)-curves and another set
B of 21 disjoint (−2)-curves such that each curve from one set
intersects exactly 5 curves from the other set with multiplicity
1;

(vii) X is isomorphic to a minimal nonsingular model of a hypersur-
face of degree 6 in P(1, 1, 1, 3) given by the equation of P2 with
branch divisor

x2
3 + x0x1x2(x

3
0 + x3

1 + x3
2) = 0;

(viii) X is isomorphic to a minimal nonsingular model of the quartic
surface with 7 rational double points of type A3 which is defined
by the equation

x4
0 + x4

1 + x4
2 + x4

3 + x2
0x

2
1 + x2

0x
2
2 + x2

1x
2
2 + x0x1x2(x0 + x1 + x2) = 0.

11.3. Automorphism group of X2. The full automorphism group
Aut(X2) is infinite. It contains a normal infinite subgroup generated
by 168 involutions and the quotient is a finite group isomorphic to
PGL(3, F4) · 2.

11.4. The Ceva(3) again. Consider the subset S of 9 points in P2(F4)
with all coordinates being nonzero. In Mukai’s realization they define
a subconfiguration of type 93. The group of automorphisms of the
surface X2 generated by a switch and the subgroup of PGL(3, F4) which
leaves the set S invariant is of order 108. It realizes a subgroup of
index 2 of the symmetry group of Ceva(3). The existence of the Ceva
configuration in P2(F4) was first observed by Gino Fano ([19]).
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